Estimating the role of climate internal variability and source of uncertainties in hydrological climate-impact projections
Abstract Hydrological climate-impact projections in future are limited by large uncertainties from various sources. Therefore, this study aimed to explore and estimate the sources of uncertainties involved in climate changing impacted assessment in a representative watershed of Northeastern China. Moreover, recent researches indicated that the climate internal variability (CIV) plays an important role in various of hydrological climate-impact projections. Six downscaled Global climate models (GCMs) under two emission scenarios and a calibrate Soil and Water Assessment Tool (SWAT) model were used to obtain hydrological projections in future periods. The CIV and signal-to-noise ratio (SNR) are investigated to analyze the the role of internal variability in hydrological projections. The results shows that the internal variability shows a considerable influence on hydrological projections, which need be partitioned and quantified particularly. Moreover, it worth noting the CIV can propagate from precipitation and ET to runoff projections through the hydrological simulation process. In order to partition the CIV and sources of uncertainties, the uncertainty decomposed frameworks based on analysis of variance (ANOVA) are established. The results demonstrate that the CIV and GCMs are the dominate contributors of runoff in rainy season. In contrast, the CIV and SWAT model parameter sets provided obvious uncertainty to runoff in January to May and October to December. The findings of this study advised that the uncertainty is complex in hydrological simulation process hence, it is meaning and necessary to estimate the uncertainty in climate simulation process, the uncertainty analysis results can provide effectively efforts to reduce uncertainty and then give some positive suggestions to stakeholders for adaption countermeasure under climate change.