scholarly journals Lahar Risk Assessment: the Case Study of Vulcano Island, Italy

Author(s):  
Alessandro Gattuso ◽  
Costanza Bonadonna ◽  
Corine Frischknecht ◽  
Sabatino Cuomo ◽  
Valerie Baumann ◽  
...  

Abstract Lahars are rapid flows composed of water and volcaniclastic sediments, which have the potential to impact residential buildings and critical infrastructure as well as to disrupt critical services, especially in absence of a hazard-based land-use planning. Their destructive power is mostly associated with their velocity (related to flow rheology and surrounding topography) and to their ability to bury buildings and structures (related to the deposit thickness). The distance reached by lahars depends on their volume, on sediments/water ratio, as well as on the overall characteristics of the path where they propagate. Here we present a novel strategy for the assessment of risk associated with lahar inundation related both to flow velocity and deposit thickness using Vulcano island (Italy) as a case study. First, a range of hazard scenarios has been identified that are related to the mobilization by intense rain events of tephra fallout deposited on the slopes of the La Fossa cone by a future Vulcanian eruption. Second, a numerical model has been used to identify the potential lahar impact areas on the northern sector of Vulcano, where both residential and touristic facilities are present. In this specific case we have used the Smoothed Particle Hydrodynamic (SPH) model that provides information on both flow velocity and deposit thickness. Finally, exposure and vulnerability surveys were carried out in order to compile risk maps for both lahar-flow velocity and final lahar-deposit thickness. Our analyses show the importance of carrying out accurate and detailed risk assessments exploring a variety of initial conditions in order to best quantify the potential damage and identify suitable mitigation strategies.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Alessandro Gattuso ◽  
Costanza Bonadonna ◽  
Corine Frischknecht ◽  
Sabatino Cuomo ◽  
Valérie Baumann ◽  
...  

AbstractLahars are rapid flows composed of water and volcaniclastic sediments, which have the potential to impact residential buildings and critical infrastructure as well as to disrupt critical services, especially in the absence of hazard-based land-use planning. Their destructive power is mostly associated with their velocity (related to internal flow properties and topographic interactions) and to their ability to bury buildings and structures (due to deposit thickness). The distance reached by lahars depends on their volume, on sediments/water ratio, as well as on the geometrical properties of the topography where they propagate. Here we present the assessment of risk associated with lahar using Vulcano island (Italy) as a case study. First, we estimated an initial lahar source volume considering the remobilisation by intense rain events of the tephra fallout on the slopes of the La Fossa cone (the active system on the island), where the tephra fallout is associated with the most likely scenario (e.g. long-lasting Vulcanian cycle). Second, we modelled and identified the potential syn-eruptive lahar impact areas on the northern sector of Vulcano, where residential and touristic facilities are located. We tested a range of parameters (e.g., entrainment capability, consolidation of tephra fallout deposit, friction angle) that can influence lahar propagation output both in terms of intensity of the event and extent of the inundation area. Finally, exposure and vulnerability surveys were carried out in order to compile exposure and risk maps for lahar-flow front velocity (semi-quantitative indicator-based risk assessment) and final lahar-deposit thickness (qualitative exposure-based risk assessment). Main outcomes show that the syn-eruptive lahar scenario with medium entrainment capability produces the highest impact associated with building burial by the final lahar deposit. Nonetheless, the syn-eruptive lahar scenario with low entrainment capacity is associated with higher runout and results in the highest impact associated with lahar-flow velocities. Based on our simulations, two critical infrastructures (telecommunication and power plant), as well as the main road crossing the island are exposed to potential lahar impacts (either due to lahar-flow velocity or lahar-deposit thickness or both). These results show that a risk-based spatial planning of the island could represent a valuable strategy to reduce the volcanic risk in the long term.


2021 ◽  
Author(s):  
Riccardo Giusti ◽  
Beatrice Monteleone ◽  
Iolanda Borzì ◽  
Mario Martina

<p>Globally, about a third of all losses related to natural hazards are due to flooding. Many studies focused their attention on the estimation of flood damages to buildings and infrastructures. However, floods cause significant losses to the agricultural sector too and negatively affect rural economies due to their impacts on agricultural productivity.</p><p>Several tools to quantify flooding economic impacts on the agricultural sector have been proposed, such as the AGRIDE-c conceptual model, and the Joint Research Centre (JRC) depth-damage functions. However, the tools have rarely been validated against data collected from surveys.</p><p>The aim of this study is the comparison between the flood economic impacts on agriculture computes using both AGRIDE-c and the JRC tool and the ones retrieved from surveys.</p><p>A questionnaire for estimating flood economic impacts on agriculture was prepared and submitted to farmers shortly after the flooding event. The selected case study area was the town of Nonantola (near the city of Modena, Northern Italy), where a flooding event occurred on 6<sup>th</sup> December 2020. The flood was caused by the collapse of about 80m levee portion along the right bank of Panaro River resulting in an inundated area around 2000 hectares. The flood involved the Nonantola town where residential buildings and an active industrial area are located, although the dominant land use is agricultural land. The main local crops are represented by forage, wheat, vineyards, fruits (pears and plums) and sugar beet.</p><p>The questionnaire is divided into four main sections: The first section is related to the generic information on the farm, the second section to the data on the inundation and damage to crops, the third section to the information on past flood events and risk mitigation strategies eventually adopted during past and present events, the fourth section data to the insurance coverage.</p><p>Two existing crop damage models (AGRIDE-c and the JRC) were calibrated using three types of data: crop yields, crop selling prices and crop cost of production. Crop yields were obtained from the Italian National Statistical Institute (ISTAT), crop selling prices and costs of production were instead available from official sources such as ISMEA and Coldiretti (Italian association of farmers).</p><p>Finally, the proposed approach will allow the comparison between the damages experienced by farmers evaluated from questionnaires and the damages estimated by the two models in order to evaluate how the models simulate data directly collected from the field surveys.</p>


Author(s):  
Veronika Brabcova ◽  
Simona Slivkova ◽  
David Rehak ◽  
Fulvio Toseroni ◽  
Jan Havko

This article focuses on the issue of assessing the cascading effects of critical energy and transport infrastructure elements at the fundamental level. The introductory part deals with the typology of failures and their impacts, which spread through the critical infrastructure system. At this stage, the paper presents current approaches to assessing the cascading effects and, in particular, addresses a newly developed assessment methodology. The following part defines the initial conditions of assessment and describes selected elements from the areas of energy and rail transport to which the methodology will be subsequently applied. The main part of the article is a case study of the proposed methodology, assessing the cascading effects by calculating the value of their risks, depending on the resilience and correlation of the rated elements.


Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad Ali Badamchizadeh ◽  
Iraj Hassanzadeh ◽  
Mehdi Abedinpour Fallah

Robust nonlinear control of flexible-joint robots requires that the link position, velocity, acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and unscented Kalman filters to estimate the link acceleration and jerk from position and velocity measurements. Both observers are designed for the same model and run with the same covariance matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is considered as a case study. Simulation results verify the effectiveness of the proposed filters.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Kese Pontes Freitas Alberton ◽  
André Luís Alberton ◽  
Jimena Andrea Di Maggio ◽  
Vanina Gisela Estrada ◽  
María Soledad Díaz ◽  
...  

This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of theEscherichia coliK-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.


Sign in / Sign up

Export Citation Format

Share Document