Soil loss estimation and severity mapping using RUSLE model and GIS: a case study in Megech Watershed, Ethiopia
Abstract AbstractBackground: Soil erosion is the most serious problem that affects economic development, food security, and ecosystem services which is the main concern in Ethiopia. This study focused on quantifying soil erosion rate and severity mapping of the Megech watershed for effective planning and decision-making processes to implement protection measures. The RUSLE model integrated with ArcGIS software was used to conduct the present study. The six RUSLE model parameters: erosivity, erodibility, slope length and steepness, cover management, and erosion control practices were used as input parameters to predict the average annual soil loss and identify erosion hotspots in the watershed. Results: The RUSLE estimated 1,399,210 tons yr-1 total soil loss from the watershed with a mean annual soil loss of 32.84 tons ha-1yr-1. The soil erosion rate was varied from 0.08 to greater than 500 tons ha-1yr-1. A severity map with seven severity classes was created for 27 sub-watersheds: low (below 10), moderate (10-20), high (20-30), very high (30-35), severe (35-40), very severe (40-45) and extremely severe (above 45) in which the values are in tons ha-1yr-1. The area coverage was 6.5%, 11.1%, 8.7%, 22%, 30.9%, 13.4%, and 7.4% for low, moderate, high, very high, severe, very severe, and extremely severe erosion classes respectively. Conclusion: About 82 % of the watershed was found in more than the high-risk category which reflects the need for immediate land management action. This paper could be important for decision-makers to prioritize critical erosion hotspot areas for comprehensive and sustainable management of the watershed.