scholarly journals Transcription of the Hydrogenase Gene during H2 Production in Scenedesmus Obliquus and Chlorella Vulgaris

Author(s):  
Yahaira de Jesus Tamayo Ordóñez ◽  
Benjamin Abraham Ayil Gutiérrez ◽  
Alejandro Ruiz Marin ◽  
Francisco Alberto Tamayo Ordóñez ◽  
Ileana Maria Mayela Moreno Davila ◽  
...  

Abstract There is ongoing research related to the production of molecular hydrogen today and algae have proven to be good biological models for producing several compounds of interest. We analyzed how genetic variations in hydrogenase genes (hyd) can affect the production of molecular hydrogen in the algae Chlorella vulgaris and Scenedesmus obliquus. Through isolation and genetic characterization of hyd genes in S. obliquus and C. vulgaris, we made in-silico 3D modeling of the hydrogenase proteins and compared these in 11 algal genera. The 3D structure of hydrogenases indicated its structural conservation in 10 genera of algae, and the results of our grouping according to the aa characteristics of the proteins showed the formation of two groups, which were unrelated to the algae’s phylogenetic classification. By growing C. vulgaris and S. obliquus in anaerobic conditions (in darkness) during 24 h and after exposing the cultures to light, we observed H2 production values of 9.0 ± 0.40 mL H2/L and 16 ± 0.50 mL H2/L, respectively. The highest global relative expression of hyd genes was reached during the first 30 min of exposure to light. The behavior of the expression of the hyd genes in these species of algae proved to be species specific and involved in the production of H2. Future identification of isoforms of hyd genes in algae would allow a better understanding of the regulation of the hydrogenase enzyme.

2021 ◽  
Vol 69 (7) ◽  
pp. 2226-2235
Author(s):  
Greta Canelli ◽  
Patricia Murciano Martínez ◽  
Sean Austin ◽  
Mark E. Ambühl ◽  
Fabiola Dionisi ◽  
...  

2003 ◽  
Vol 10 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Tamece T. Knowles ◽  
A. Rick Alleman ◽  
Heather L. Sorenson ◽  
David C. Marciano ◽  
Edward B. Breitschwerdt ◽  
...  

ABSTRACT Canine monocytic ehrlichiosis, caused by Ehrlichia canis or Ehrlichia chaffeensis, can result in clinical disease in naturally infected animals. Coinfections with these agents may be common in certain areas of endemicity. Currently, a species-specific method for serological diagnosis of monocytic ehrlichiosis is not available. Previously, we developed two indirect enzyme-linked immunosorbent assays (ELISAs) using the major antigenic protein 2 (MAP2) of E. chaffeensis and E. canis. In this study, we further characterized the conservation of MAP2 among various geographic isolates of each organism and determined if the recombinant MAP2 (rMAP2) of E. chaffeensis would cross-react with E. canis-infected dog sera. Genomic Southern blot analysis using digoxigenin-labeled species-specific probes suggested that map2 is a single-copy gene in both Ehrlichia species. Sequences of the single map2 genes of seven geographically different isolates of E. chaffeensis and five isolates of E. canis are highly conserved among the various isolates of each respective ehrlichial species. ELISA and Western blot analysis confirmed that the E. chaffeensis rMAP2 failed to serologically differentiate between E. canis and E. chaffeensis infections.


1990 ◽  
Vol 11 (03) ◽  
pp. 271-280
Author(s):  
J. H. P. Nyeko ◽  
O. K. Ole-Moiyoi ◽  
P. A. O. Majiwa ◽  
L. H. Otieno ◽  
P. M. Ociba

2021 ◽  
Vol 55 ◽  
pp. 102246
Author(s):  
Sulin Lou ◽  
Xin Lin ◽  
Chenglong Liu ◽  
Muhammad Anwar ◽  
Hui Li ◽  
...  

2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 485-490 ◽  
Author(s):  
Sylvana Soto-Alvear ◽  
Mauricio Lolas ◽  
Inés M. Rosales ◽  
Eduardo R. Chávez ◽  
Bernardo A. Latorre

Apple fruit in Chile are primarily produced for export to Asia, Europe, and the United States, which typically requires 15 to 40 days of maritime transportation. Therefore, Chilean apple production must fulfill the sanitization requirements imposed by the receiving countries. Under these circumstances, it was important to clarify the etiology of bull's eye rot that can severely affect ‘Cripps Pink’ apple and other late-harvest cultivars in Chile. Based on morphological characteristics and the partial sequence analysis of the internal transcribed spacer sequences and β-tubulin genes, Neofabraea alba was identified as the causal agent of the bull's eye rot of Chilean apple. These results were further corroborated using species-specific primers. The incidence of bull's eye rot varied considerably; for instance, in 2009, 0.0 to 58.7% in 38 Cripps Pink orchards surveyed in the relatively arid and humid apple-growing areas of Chile, respectively. There was no evidence for the presence of N. malicorticis or N. perennans, which are commonly identified as causal agents of bull's eye rot in other apple-producing countries. Altogether, these data suggest that N. alba might represent the predominant and possibly the only cause of bull's-eye rot of Chilean apple.


Sign in / Sign up

Export Citation Format

Share Document