Determining stress state of source media with identified difference between groundwater level during loading and unloading induced by earth tide
Abstract The groundwater might be adopted as a useful tool to explore pre-seismic stress change in the crust, because it circulates in the deep crust and should be altered by the processes associated with the preparation of earthquakes. This work makes a new attempt that applies the load/unload response ratio (LURR) technique to study stress state of source media by calculating the ratio between water level during the loading and unloading phases. The change of Coulomb failure stress induced by earth tide in the tectonically preferred slip direction on the fault surface of the main shock is adopted for differentiating the loading and unloading periods. Using this approach, we test the groundwater level in the wells near the epicenters of some large earthquakes occurred in the Sichuan-Yunnan region of southwest China. Results show that the LURR time series fluctuate narrowly around 1.0 for many years, and climb to the maximum peaks prior to the main shocks. The magnitude of the pre-seismic peaks decreases with the distance from the epicenters. We hypothesized that the underlying physics of these changes might be explained by the pre-seismic dilatancy. The corresponding volume variations could be observed in the geodetic time series in the same neighborhoods.