scholarly journals Enzymatic Hydrolysis of Lignocellulosic Biomass Using an Optimized Enzymatic Cocktail Prepared From Secretomes of Filamentous Fungi Isolated From Amazonian Biodiversity

Author(s):  
Pamella Santa Rosa ◽  
Jessica Batista de Oliveira ◽  
Spartaco Astolfi Filho ◽  
Nei Pereira

Abstract The use of lignocellulosic biomass (LCB) has emerged as one of the main strategies for generating renewable biofuels. For the efficient use of such feedstock, pretreatments are essential. The hydrolysis of cellulose – major component of LCB - demands enzymatic cocktails with improved efficiency to generate fermentable sugars. In this scenario, lignocellulolytic fungi have enormous potential for the development of efficient enzyme platforms. In this study, two enzymatic cocktails were developed for hydrolysis of two lignocellulosic biomasses: industrial cellulose pulp and cassava peel. The solid biomass ratio in relation to the protein content of the enzyme cocktail were performed by experimental design. The optimized cocktail for the hydrolysis of cellulose pulp (AMZ 1) was composed, in protein base, by 43% of Aspergillus sp LMI03 enzyme extract and 57% of T. reesei QM9414, while the optimal enzyme cocktail for cassava peel hydrolysis (AMZ 2) was composed by 50% of Aspergillus sp LMI03 enzyme extract, 25% of the extract of P. citrinum LMI01 and 25% of T. reesei. The ratio between solids and protein loading for AMZ 1 cocktail performance was 52 g/L solids and 30mg protein/g solids, resulting in a hydrolytic efficiency of 93%. For the AMZ 2 cocktail, the hydrolytic efficiency was 78% for an optimized ratio of 78g/L solids and 19mg protein/g solids. These results indicate that cocktails formulated with enzymatic extracts of P. citrinum LMI01, Aspergillus sp LMI03 and T. reesei QM9414 are excellent alternatives for efficient hydrolysis of plant biomass and for other processes that depend on biocatalysis.

2020 ◽  
Vol 2 (1) ◽  
pp. 77

Bioconversion of renewable lignocellulosic biomass to biofuel and value-added products is globally gaining significant importance. Lignocellulosic wastes are the most promising feedstock considering its great availability and low cost. The biomass conversion process involves mainly two steps: hydrolysis of cellulose in the lignocellulosic biomass to produce reducing sugars and fermentation of the sugars to ethanol and other bioproducts. However, sugars necessary for fermentation are trapped inside the recalcitrant structure of the lignocellulose. Hence, pretreatment of lignocellulosic wastes is always necessary to alter and/or remove the surrounding matrix of lignin and hemicelluloses in order to improve the hydrolysis of cellulose. These pretreatments cause physical and/or chemical changes in the plant biomass in order to achieve this result. Each pretreatment has a specific effect on the cellulose, hemicellulose, and lignin fraction. Thus, the pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis steps. In general, pretreatment methods can be classified into four categories, including physical, physicochemical, chemical, and biological pretreatment. Bioresource utilization of biopolymeric materials has now gained recent attention. Cellulose was extracted from water hyacinth by acid, alkali treatment & extracted cellulose was grafted with curcumin, pesticide, grape juice, magnetorheological fluid, and the grafted composite material was evaluated for release of respective grafted materials. In the present study, a polymer extracted from water hyacinth was evaluated for various applications. The present study would suggest the possible utilization of water hyacinth composite as the biomaterial for diverse applications.


Author(s):  
V. S. Boltovsky

Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids. 


2018 ◽  
Vol 2 (5) ◽  
pp. 1048-1056 ◽  
Author(s):  
Rui Zhai ◽  
Jinguang Hu ◽  
Jack N. Saddler

The key enzyme activities were selectively inhibited and/or deactivated by water-soluble components derived from pretreated lignocellulosic biomass.


2019 ◽  
Vol 4 (3) ◽  
pp. 158-162
Author(s):  
G Sinha ◽  
S Tiwari ◽  
S K Jadhav

Energy consumption has inflated steadily over the last century because the world population has fully grown and additional countries became industrialised. Bioethanol is an alcohol produced by fermentation of plant biomass, containing carbohydrate and its production depends upon feedstock availability, variability, and sustainability. The selection of feedstock and its pretreatment is an important part of bioethanol production process. In present work, the exploration of the potential of agro-waste rice residues such as, rice bran and rice husk was done, because it contains sufficient amount of carbohydrate which can be ferment into bioethanol. The aim of the research was also to investigate how different pretreatment methods with moderate conditions differ in hydrolysis and fermentation efficiencies. Pretreatment plays an important role in the hydrolysis of cellulose and lignocellulose. It was found that biological pretreatment was a most effective method in terms of production of bioethanol and it enhances the production as well as fermentation efficiency.


2020 ◽  
Vol 16 ◽  
pp. 1713-1721
Author(s):  
Isaline Bonnin ◽  
Raphaël Mereau ◽  
Thierry Tassaing ◽  
Karine De Oliveira Vigier

The catalytic conversion of (ligno)cellulose is currently subject of intense research. Isosorbide is one of the interesting products that can be produced from (ligno)cellulose as it can be used for the synthesis of a wide range of pharmaceuticals, chemicals, and polymers. Isosorbide is obtained after the hydrolysis of cellulose to glucose, followed by the hydrogenation of glucose to sorbitol that is then dehydrated to isosorbide. The one-pot process requires an acid and a hydrogenation catalyst. Several parameters are of importance during the direct conversion of (ligno)cellulose such as the acidity, the crystallinity and the particle size of cellulose as well as the nature of the feedstocks. This review highlights all these parameters and all the strategies employed to produce isosorbide from (ligno)cellulose in a one-pot process.


2021 ◽  
Vol 1 (1) ◽  
pp. 23-26
Author(s):  
Najam-us-Sahar Sadaf Zaidi ◽  
M. Waheed Akhtar

This study describes the cloning and high-level expression of an Endoglucanase A Gene (egIA) from a hyperthermophilic archeon Pyrococcus Furiosus. An expression plasmid pET-EgIA was constructed for the production of recombinant EgIA in E.Coli B12 (DE3) under the control of T7lac promoter. Following induction, ~35kDa protein expressed at levels greater than 20% of the total E.Coli cellular proteins. The expressed protein, however, was in the form of inclusion bodies with little enzymatic activity, which was solubilized using higher concentration of denaturing agent (8M urea) followed by its refolding to an active state. A 7-8 fold increase in enzyme activity corresponding to 285U/mg specific activity could be achieved after refolding. The refolded egIA, partially purified by heat treatment upto ~92%, is being investigated for applications like hydrolysis of cellulose, a major component of plant biomass. Local, upscale and cheap production of these cellulolytic enzymes can help in reducing the costs of many processes in various industries like poultry and textile. 


2018 ◽  
Author(s):  
◽  
Samkelo Malgas

Currently, there is a growing interest in utilising hardwoods as feedstocks for bioethanol production due to the vast advantages they have over other feedstocks for fermentable sugar production. In this study, two selected hardwoods, Acacia and Populus spp., were subjected to two pre-treatment processes (Sodium chlorite delignification and Steam explosion) and compared with respect to how these pre-treatments affect their enzymatic saccharification. Hardwoods were selected for this study, because hardwoods are easier to delignify when compared to softwoods, and therefore their polysaccharides are more easily accessible by enzymes for the purpose of producing fermentable sugars. Currently available commercial enzyme mixtures have been developed for optimal hydrolysis of acid-pre-treated corn stover and are therefore not optimal for saccharification of pre-treated hardwoods. In this work, we attempted the empirical design of a hardwood specific enzyme cocktail, HoloMix. Firstly, a cellulolytic core-set, CelMix (in a ratio of Egl 68%: Cel7A 17%: Cel6A 6%: Bgl1 9%), for the optimal release of glucose, and a xylanolytic core-set, XynMix (in a ratio of Xyn2A 60%: XT6 20%: AguA 11%: SXA 9%), for the optimal release of xylose, were formulated using an empirical enzyme ratio approach after biochemically characterising these enzymes. As it is well ̶ known that biomass pre-treatment may result in the generation of compounds that hamper enzymatic hydrolysis and microbial fermentation, the effects of these compounds on CelMix and XynMix were evaluated. Using the optimised CelMix and XynMix cocktails, a HoloMix cocktail was established for optimal reducing sugar, glucose and xylose release from the various pre-treated hardwoods. For delignified biomass, the optimized HoloMix consisted of CelMix to XynMix at 75% to 25% protein loading, while for the untreated and steam exploded biomass the HoloMix consisted of CelMix to XynMix at 93.75% to 6.25% protein loading. Sugar release by the HoloMix at a loading of 27.5 mg protein/g of biomass (or 55 mg protein/g of glucan) after 24 h gave 70-100% sugar yield. Treatment of the hardwoods with a laccase from Agaricus bisporus, especially wood biomass with a higher proportion of lignin, significantly improved saccharification by the formulated HoloMix enzyme cocktails. This study provided insights into the enzymatic hydrolysis of various pre-treated hardwood substrates and assessed whether the same lignocellulolytic cocktail can be used to efficiently hydrolyse different hardwood species. The present study also demonstrated that the hydrolysis efficiency of the optimised HoloMix was comparable to (if not better) than commercial enzyme preparations during hardwood biomass saccharification.


2015 ◽  
Vol 134 ◽  
pp. 700-708 ◽  
Author(s):  
Leonora Rios de Souza Moreira ◽  
Alice da Cunha Morales Álvares ◽  
Francides Gomes da Silva Jr ◽  
Sonia Maria de Freitas ◽  
Edivaldo Ximenes Ferreira Filho

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Sign in / Sign up

Export Citation Format

Share Document