scholarly journals Dynamic Balancing Responses in Unilateral Transtibial Amputees Following Transversal Plane Perturbations During Slow Treadmill Walking Differ Considerably for Amputated and Nonamputated Side

2020 ◽  
Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract BackgroundDue to disrupted motor and proprioceptive function lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in case of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis at the time of foot strike on nonamputated and amputated side during slow walking.MethodsFourteen subjects with unilateral transtibial amputation and nine healthy subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis in different directions at the time of foot strike of either left or right leg. Centre of pressure and centre of mass positions, duration of in-stance and stepping periods as well as ground reaction forces were recorded and analysed for significant differences in dynamic balancing responses between healthy subjects and subjects with amputation when subjected to perturbation upon entering stance phases with nonamputated or amputated side.ResultsWhen perturbations were delivered at the time of foot strike of nonamputated leg subjects with amputation were able to modulate centre of pressure and ground reaction force similarly as healthy subjects. There was a complete lack of in-stance response when perturbations were delivered at the time of foot strike of amputated leg. Instead they used stepping strategy and adjusted placement of nonamputated leg in the ensuing stance phase to increase (forward perturbation) or decrease (backward perturbation) step length or making a cross-step (outward perturbation) which resulted in higher displacement of centre of mass. However, when perturbations were directed inward healthy subjects and subjects with amputation reacted primarily with a stepping response regardless whether healthy, nonamputated or amputated leg was in stance phase.ConclusionsResults of this study suggest that due to the absence of COP modulation mechanism that is normally supplied by calf muscles people with unilateral transtibial amputation are compelled to choose stepping strategy over in-stance strategy when they are subjected to perturbation on the amputated side. However the stepping response is less efficient than in-stance response which may potentially be significant contributor to frequent falls.

2021 ◽  
Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract BackgroundDue to disrupted motor and proprioceptive function lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in case of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on non-amputated and amputated side during slow walking.MethodsFourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases with non-amputated or amputated side.ResultsWhen outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly higher displacement of center of mass. ConclusionsResults of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response. To improve their balancing responses to unexpected balance perturbation people fitted with passive transtibial prostheses should undergo perturbation-based balance training during clinical rehabilitation.


Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract Background Due to disrupted motor and proprioceptive function, lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in presence of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on their non-amputated and amputated side during slow walking. Methods Fourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases on their non-amputated or amputated sides. Results When outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly larger displacement of center of mass. Conclusions Results of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response.


2020 ◽  
Author(s):  
Matjaž Zadravec ◽  
Andrej Olenšek ◽  
Marko Rudolf ◽  
Nataša Bizovičar ◽  
Nika Goljar ◽  
...  

Abstract Background : Generating appropriate balancing reactions in response to unexpected loss of balance during walking is important to prevent falls. The purpose of this study was to assess dynamic balancing responses following pushes to the pelvis in groups of post-stroke and healthy subjects. Methods : Forty-one post-stroke subjects and forty-three healthy subjects participated in the study. Dynamic balancing responses to perturbations triggered at heel strike of the left or right leg, directed in the forward, backward, inward and outward directions during slow treadmill walking were assessed. Responses of the healthy group provided reference values used to classify responses of the post-stroke group into two subgroups; one within the reference responses (“inside” subgroup) and the other that falls out (“outside” subgroup). A battery of selected clinical outcome measures (6-Minute Walk Test, 10-Meter Walk Test, Timed-Up-and-Go test, Four Square Step Test, Functional Gait Assessment, Functional Independence Measure and One-legged stance test) was additionally assessed in the post-stroke group. Results : The “inside” subgroup of post-stroke subjects was able to appropriately modulate centre-of-pressure and ground-reaction-force both under the impaired and non-impaired leg in response to perturbations. The “outside” subgroup of post-stroke subjects showed limited modulation of centre-of-pressure and ground-reaction-force under the impaired leg; instead a stepping strategy was used in which the non-impaired leg was placed such as to make a longer step (forward perturbation), to make a shorter step (backward perturbation) or to make a cross-step (outward perturbation). Consequently, peak centre-of-mass displacements following perturbations were significantly higher in the “outside” subgroup compared to the “inside” subgroup. Responses in both subgroups following inward perturbations did not differ. Majority of clinical outcome measures moderately correlated with the peak centre-of-mass displacements for forward perturbations and exhibited weak correlations for other perturbation directions. Conclusions : Substantial number of post-stroke subjects, that were considered to be independent walkers, have reduced capabilities to execute appropriate balancing responses following perturbations commencing on the hemiparetic leg and may thus benefit from perturbation-based training. Selected clinical outcome measures may provide an indication on the abilities of each subject to counteract unexpected loss of balance. However, a reliable assessment should be done through perturbation-based measures.


2020 ◽  
Author(s):  
Matjaž Zadravec ◽  
Andrej Olenšek ◽  
Marko Rudolf ◽  
Nataša Bizovičar ◽  
Nika Goljar ◽  
...  

Abstract Background : Generating appropriate balancing reactions in response to unexpected loss of balance during walking is important to prevent falls. The purpose of this study was to assess dynamic balancing responses following pushes to the pelvis in groups of post-stroke and healthy subjects. Methods : Forty-one post-stroke subjects and forty-three healthy subjects participated in the study. Dynamic balancing responses to perturbations triggered at heel strike of the left or right leg, directed in the forward, backward, inward and outward directions during slow treadmill walking were assessed. Responses of the healthy group provided reference values used to classify responses of the post-stroke group into two subgroups; one within the reference responses (“inside” subgroup) and the other that falls out (“outside” subgroup). A battery of selected clinical outcome measures (6-Minute Walk Test, 10-Meter Walk Test, Timed-Up-and-Go test, Four Square Step Test, Functional Gait Assessment, Functional Independence Measure and One-legged stance test) was additionally assessed in the post-stroke group. Results : The “inside” subgroup of post-stroke subjects was able to appropriately modulate centre-of-pressure and ground-reaction-force both under the impaired and non-impaired leg in response to perturbations. The “outside” subgroup of post-stroke subjects showed limited modulation of centre-of-pressure and ground-reaction-force under the impaired leg; instead a stepping strategy was used in which the non-impaired leg was placed such as to make a longer step (forward perturbation), to make a shorter step (backward perturbation) or to make a cross-step (outward perturbation). Consequently, peak centre-of-mass displacements following perturbations were significantly higher in the “outside” subgroup compared to the “inside” subgroup. Responses in both subgroups following inward perturbations did not differ. Majority of clinical outcome measures moderately correlated with the peak centre-of-mass displacements for forward perturbations and exhibited weak correlations for other perturbation directions. Conclusions : Substantial number of post-stroke subjects, that were considered to be independent walkers, have reduced capabilities to execute appropriate balancing responses following perturbations commencing on the hemiparetic leg and may thus benefit from perturbation-based training. Selected clinical outcome measures may provide an indication on the abilities of each subject to counteract unexpected loss of balance. However, a reliable assessment should be done through perturbation-based measures.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3422
Author(s):  
Jian-Zhi Lin ◽  
Wen-Yu Chiu ◽  
Wei-Hsun Tai ◽  
Yu-Xiang Hong ◽  
Chung-Yu Chen

This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.


Author(s):  
Constantinos Maganaris ◽  
Vasilios Baltzopoulos ◽  
David Jones ◽  
Irene Di Giulio ◽  
Neil Reeves ◽  
...  

This chapter discusses strategies that older and younger people employ to negotiate stairs based on experiments performed on an instrumented staircase in lab environment aiming at identifying ways to reduce stair fall risk for the elderly. Stair negotiation was found to be more demanding for the knee and ankle joint muscles in older than younger adults, with the demand increasing further when the step-rise was higher. During descent of stairs with higher step-rises, older adults shifted the centre of mass (COM) posteriorly, behind the centre of pressure (COP) to prevent forward falling. A decreased step-going resulted in a slower descent of the centre of mass in the older adults and standing on a single leg for longer than younger adults. A greater reliance on the handrails and rotation of the body in the direction of the handrail was also observed when the step-going was decreased during descent, which allowed this task to be performed with better dynamic stability, by maintaining the COM closer to the COP. These findings have important implications for stair design and exercise programs aiming at improving safety on stairs for the elderly.


2005 ◽  
Vol 21 ◽  
pp. S150
Author(s):  
B. Santos ◽  
C. Larivière ◽  
A. Delisle ◽  
A. Plamondon ◽  
D. McFadden ◽  
...  

2020 ◽  
Vol 7 (9) ◽  
pp. 200111
Author(s):  
Pietro Morasso

This study proposes a generalization of the ankle and hip postural strategies to be applied to the large class of skills that share the same basic challenge of defeating the destabilizing effect of gravity on the basis of the same neuromotor control organization, adapted and specialized to a variable number of degrees of freedom, different body parts, different muscles and different sensory feedback channels. In all the cases, we can identify two crucial elements (the CoP, centre of pressure and the CoM, centre of mass) and the central point of the paper is that most balancing skills can be framed in the CoP–CoM interplay and can be modelled as a combination/alternation of two basic stabilization strategies: the standard well-investigated COPS (or CoP stabilization strategy, the default option), where the CoM is the controlled variable and the CoP is the control variable, and the less investigated COMS (or CoM stabilization strategy), where CoP and CoM must exchange their role because the range of motion of the CoP is strongly constrained by environmental conditions. The paper focuses on the tightrope balancing skill where sway control in the sagittal plane is modelled in terms of the COPS while the more challenging sway in the coronal plane is modelled in terms of the COMS, with the support of a suitable balance pole. Both stabilization strategies are implemented as state-space intermittent, delayed feedback controllers, independent of each other. Extensive simulations support the degree of plausibility, generality and robustness of the proposed approach.


2005 ◽  
Vol 93 (6) ◽  
pp. 3075-3085 ◽  
Author(s):  
Nazarena Mazzaro ◽  
Michael J. Grey ◽  
Thomas Sinkjær ◽  
Jacob Buus Andersen ◽  
Davide Pareyson ◽  
...  

The aim of this study was to investigate the contribution of feedback from large-diameter sensory fibers to the adaptation of soleus muscle activity after small ankle trajectory modifications during human walking. Small-amplitude and slow-velocity ankle dorsiflexion enhancements and reductions were applied during the stance phase of the gait cycle to mimic the normal variability of the ankle trajectory during walking. Patients with demyelination of large sensory fibers (Charcot-Marie-Tooth type 1A and antibodies to myelin-associated glycoprotein neuropathy) and age-matched controls participated in this study. The patients had absent light-touch sense in the toes and feet and absent quadriceps and Achilles tendon reflexes, indicating functional loss of large sensory fibers. Moreover, their soleus stretch reflex response consisted of a single electromyographic (EMG) burst with delayed onset and longer duration ( P < 0.01) than the short- and medium-latency reflex responses observed in healthy subjects. In healthy subjects, the soleus EMG gradually increased or decreased when the ankle dorsiflexion was, respectively, enhanced or reduced. In the patients, the soleus EMG increased during the dorsiflexion enhancements; however, the velocity sensitivity of this response was decreased compared with the healthy volunteers. When the dorsiflexion was reduced, the soleus EMG was unchanged. These results indicate that the enhancement of the soleus EMG is mainly sensitive to feedback from primary and secondary muscle spindle afferents and that the reduction may be mediated by feedback from the group Ib pathways. This study provides evidence for the role of sensory feedback in the continuous adaptation of the soleus activity during the stance phase of human walking.


Sign in / Sign up

Export Citation Format

Share Document