scholarly journals How Far are Autonomous Vehicles from Driving in Real Traffic? The Adaptability Analysis of Autonomous Vehicles to Cut-in Scenarios in China

Author(s):  
Shulian Zhao ◽  
ke wang ◽  
Yan Long ◽  
Junlan Chen

Abstract At present, autonomous vehicle technologies (AVTs) have been extensively researched and developed, but there is less research focused on the adaptability of current AVTs to the real traffic. Whether AVTs can be competent in the real driving environment is still an issue. To fill the gap, this paper first collected a great amount of driving data from more than 60 Chinese drivers and established a big natural driving database covering millions of kilometers, all-weather and all working conditions. Then, using the dataset, 3044 cut-in scenarios related to automatic driving were extracted and their characteristics were analyzed based on the cluster method. According to the distribution of cut-in behavior, the related technical requirements of autonomous vehicles were clearly detailed, analyzed, and evaluated from the perspectives of perception, intelligent networking, and motion planning. Finally, from the comparative analysis, we draw the adaptation conclusions of the current AVTs to the real traffic and point out the unsolved challenges. Our conclusions could be very useful for motor corporations and researchers to draw their attention to the complexity of the Chinese traffic environment, and for policy-makers to think about making new AVTs policies in anticipation of the advent of future autonomous vehicles.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3850
Author(s):  
Bastien Vincke ◽  
Sergio Rodriguez Rodriguez Florez ◽  
Pascal Aubert

Emerging technologies in the context of Autonomous Vehicles (AV) have drastically evolved the industry’s qualification requirements. AVs incorporate complex perception and control systems. Teaching the associated skills that are necessary for the analysis of such systems becomes a very difficult process and existing solutions do not facilitate learning. In this study, our efforts are devoted to proposingan open-source scale model vehicle platform that is designed for teaching the fundamental concepts of autonomous vehicles technologies that are adapted to undergraduate and technical students. The proposed platform is as realistic as possible in order to present and address all of the fundamental concepts that are associated with AV. It includes all on-board components of a stand-alone system, including low and high level functions. Such functionalities are detailed and a proof of concept prototype is presented. A set of experiments is carried out, and the results obtained using this prototype validate the usability of the model for the analysis of time- and energy-constrained systems, as well as distributed embedded perception systems.


2019 ◽  
Vol 65 (4) ◽  
pp. 1-9
Author(s):  
Milan Zlatkovic ◽  
Andalib Shams

As traffic congestion increases day by day, it becomes necessary to improve the existing roadway facilities to maintain satisfactory operational and safety performances. New vehicle technologies, such as Connected and Autonomous Vehicles (CAV) have a potential to significantly improve transportation systems. Using the advantages of CAVs, this study developed signalized intersection control strategy algorithm that optimizes the operations of CAVs and allows signal priority for connected platoons. The algorithm was tested in VISSIM microsimulation using a real-world urban corridor. The tested scenarios include a 2040 Do-Nothing scenario, and CAV alternatives with 25%, 50%, 75% and 100% CAV penetration rate. The results show a significant reduction in intersection delays (26% - 38%) and travel times (6% - 20%), depending on the penetration rate, as well as significant improvements on the network-wide level. CAV penetration rates of 50% or more have a potential to significantly improve all operational measures of effectiveness.


2020 ◽  
Vol 10 (9) ◽  
pp. 3180 ◽  
Author(s):  
Dongfang Dang ◽  
Feng Gao ◽  
Qiuxia Hu

Vehicles are highly coupled and multi-degree nonlinear systems. The establishment of an appropriate vehicle dynamical model is the basis of motion planning for autonomous vehicles. With the development of autonomous vehicles from L2 to L3 and beyond, the automatic driving system is required to make decisions and plans in a wide range of speeds and on bends with large curvature. In order to make precise and high-quality control maneuvers, it is important to account for the effects of dynamical coupling in these working conditions. In this paper, a new single-coupled dynamical model (SDM) is proposed to deal with the various dynamical coupling effects by identifying and simplifying the complicated one. An autonomous vehicle motion planning problem is then formulated using the nonlinear model predictive control theory (NMPC) with the SDM constraint (NMPC-SDM). We validated the NMPC-SDM with hardware-in-the-loop (HIL) experiments to evaluate improvements to control performance by comparing with the planners original design, using the kinematic and single-track models. The comparative results show the superiority of the proposed motion planning algorithm in improving the maneuverability and tracking performance.


2021 ◽  
Vol 257 ◽  
pp. 02061
Author(s):  
Haoru Luo ◽  
Kechun Liu

For autonomous vehicles, autonomous positioning is a core technology in their development. A good positioning system not only helps them efficiently complete autonomous operations, but also improves safety performance. At present, the use of global positioning system (GPS) is a more mainstream positioning method, but in indoor, serious shelter and other environments, GPS signal loss will lead to positioning failure. In order to solve this problem, this paper proposes a method of mapping before positioning, and designs a set of high precision real-time positioning system by combining the technology of multi-sensor fusion. The designed system was carried on a Wuling sightseeing bus, and the mapping and positioning tests were carried out in the Nanhu Campus of Wuhan University of Technology, the East Campus of Mafangshan Campus and the underground garage where GPS signals were lost. The test results show that the system can realize the high precision real-time positioning function of the autonomous vehicle. Therefore, the in-depth study and implementation of this system is of great significance to the promotion and application of the automatic driving industry.


Author(s):  
C. K. Toth ◽  
Z. Koppanyi ◽  
M. G. Lenzano

<p><strong>Abstract.</strong> The ongoing proliferation of remote sensing technologies in the consumer market has been rapidly reshaping the geospatial data acquisition world, and subsequently, the data processing as well as information dissemination processes. Smartphones have clearly established themselves as the primary crowdsourced data generators recently, and provide an incredible volume of remote sensed data with fairly good georeferencing. Besides the potential to map the environment of the smartphone users, they provide information to monitor the dynamic content of the object space. For example, real-time traffic monitoring is one of the most known and widely used real-time crowdsensed application, where the smartphones in vehicles jointly contribute to an unprecedentedly accurate traffic flow estimation. Now we are witnessing another milestone to happen, as driverless vehicle technologies will become another major source of crowdsensed data. Due to safety concerns, the requirements for sensing are higher, as the vehicles should sense other vehicles and the road infrastructure under any condition, not just daylight in favorable weather conditions, and at very fast speed. Furthermore, the sensing is based on using redundant and complementary sensor streams to achieve a robust object space reconstruction, needed to avoid collisions and maintain normal travel patterns. At this point, the remote sensed data in assisted and autonomous vehicles are discarded, or partially recorded for R&amp;amp;D purposes. However, in the long run, as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication technologies mature, recording data will become a common place, and will provide an excellent source of geospatial information for road mapping, traffic monitoring, etc. This paper reviews the key characteristics of crowdsourced vehicle data based on experimental data, and then the processing aspects, including the Data Science and Deep Learning components.</p>


Author(s):  
Patrícia S. Lavieri ◽  
Venu M. Garikapati ◽  
Chandra R. Bhat ◽  
Ram M. Pendyala ◽  
Sebastian Astroza ◽  
...  

Considerable interest exists in modeling and forecasting the effects of autonomous vehicles on travel behavior and transportation network performance. In an autonomous vehicle (AV) future, individuals may privately own such vehicles, use mobility-on-demand services provided by transportation network companies that operate shared AV fleets, or adopt a combination of those two options. This paper presents a comprehensive model system of AV adoption and use. A generalized, heterogeneous data model system was estimated with data collected as part of the Puget Sound, Washington, Regional Travel Study. The results showed that lifestyle factors play an important role in shaping AV usage. Younger, urban residents who are more educated and technologically savvy are more likely to be early adopters of AV technologies than are older, suburban and rural individuals, a fact that favors a sharing-based service model over private ownership. Models such as the one presented in this paper can be used to predict the adoption of AV technologies, and such predictions will, in turn, help forecast the effects of AVs under alternative future scenarios.


2020 ◽  
Vol 10 (16) ◽  
pp. 5655
Author(s):  
Miguel Ángel de Miguel ◽  
Francisco Miguel Moreno ◽  
Pablo Marín-Plaza ◽  
Abdulla Al-Kaff ◽  
Martín Palos ◽  
...  

This work presents a novel platform for autonomous vehicle technologies research for the insurance sector. The platform has been collaboratively developed by the insurance company MAPFRE-CESVIMAP, Universidad Carlos III de Madrid and INSIA of the Universidad Politécnica de Madrid. The high-level architecture and several autonomous vehicle technologies developed using the framework of this collaboration are introduced and described in this work. Computer vision technologies for environment perception, V2X communication capabilities, enhanced localization, human–machine interaction and self awareness are among the technologies which have been developed and tested. Some use cases that validate the technologies presented in the platform are also presented; these use cases include public demonstrations, tests of the technologies and international competitions for self-driving technologies.


2020 ◽  
Vol 37 (7) ◽  
pp. 883-894
Author(s):  
Michael A. Erskine ◽  
Stoney Brooks ◽  
Timothy H. Greer ◽  
Charles Apigian

Purpose The purpose of this paper is to inform researchers who are examining the adoption of autonomous vehicle technology and to provide marketing insights for developers and manufacturers of such vehicles and their ancillary technologies. Design/methodology/approach This study assesses consumer attitudes and behavioral intentions regarding autonomous vehicles (AV) by applying the consumer version of the unified theory of acceptance and use of technology (UTAUT2). We validate the model through a behavioral research study (n = 1,154). Findings The findings suggest that attitude toward AV is primarily formed through performance expectancy, effort expectancy, social influence and hedonic motivation. Furthermore, the level of autonomy has limited effects on attitude. Originality/value This is the first study to examine attitudes toward AV through the theoretical lens of UTAUT2. Additionally, this study provides insights into consumer perceptions and the corresponding effects on attitude by moderating the level of autonomy.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983158 ◽  
Author(s):  
Desheng Xie ◽  
Youchun Xu ◽  
Rendong Wang

The movement state of obstacle including position, velocity, and yaw angle in the real traffic scenarios has a great impact on the path planning and decision-making of autonomous vehicle. Aiming at how to get the obstacle’s movement state in the real traffic scenarios, an approach is proposed to detect and track obstacle based on three-dimensional Light Detection And Ranging (LiDAR). Firstly, the point-cloud data produced by three-dimensional LiDAR after the road segmentation is rasterized, and the reuse of useful non-obstacle cells is carried out on the basis of the rasterized point-cloud data. The proposed eight-neighbor cells clustering algorithm is used to cluster the obstacle. Based on the clustering result, static obstacle detection of multi-frame fusion is worked out by combining real-time kinematic global positioning system data and inertial navigation system data of autonomous vehicle. And we further use the static obstacle detection result to detect moving obstacle located in the travelable area. After that, an improved dynamic tracking point model and Kalman filter are applied to track moving obstacle stably, and we finally get the moving obstacle’s stable movement state. A large amount of experiments on the autonomous vehicle developed by us show that the method has a high degree of reliability.


2020 ◽  
Vol 308 ◽  
pp. 06002
Author(s):  
Zongwei Liu ◽  
Hao Jiang ◽  
Hong Tan ◽  
Fuquan Zhao

The mass production of autonomous vehicle is coming, thanks to the rapid progress of autonomous driving technology, especially the recent breakthroughs in LiDAR sensors, GPUs, and deep learning. Many automotive and IT companies represented by Waymo and GM are constantly promoting their advanced autonomous vehicles to hit public roads as early as possible. This paper systematically reviews the latest development and future trend of the autonomous vehicle technologies, discusses the extensive application of AI in ICV, and identifies the key problems and core challenges facing the commercialization of autonomous vehicle. Based on the review, it forecasts the prospects and conditions of autonomous vehicle’s mass production and points out the arduous, long-term and systematic nature of its development.


Sign in / Sign up

Export Citation Format

Share Document