scholarly journals Effects of a Cylinder Liner Microstructure on Lubrication Condition of a Twin-Land Oil Control Ring and a Piston Skirt of an Internal Combustion Engine

Author(s):  
Koji Kikuhara ◽  
Philipp S Koeser ◽  
Tian Tian

Abstract It is hypothesized that the sliding surface structures improve the lubrication condition by forming an oil sump on the sliding surface, redistributing the oil, and trapping wear debris. For these reasons, the sliding surface structures have been used as a friction reduction method for a long time. However, how to optimize the sliding surface structure is still controversial. In this work, effects of microstructure laid on the cylinder liner of an internal combustion engine on twin-land oil control ring (TLOCR) and piston skirt lubrication condition were investigated by comparing friction between the conventional fine-honed liner (CFL) and the microstructured liner (MSL) which was made based on the CFL. As a result of the friction measurement using a floating liner engine, it was found that the microstructure improved lubrication condition by reducing hydrodynamic friction. On the other hand, the result showed there was a possibility that the microstructure deteriorated friction depending on the engine operating conditions.

2019 ◽  
Vol 71 (4) ◽  
pp. 515-524 ◽  
Author(s):  
Venkateswara Babu P. ◽  
Ismail Syed ◽  
Satish Ben Beera

Purpose In an internal combustion engine, piston ring-cylinder liner tribo pair is one among the most critical rubbing pairs. Most of the energy produced by an internal combustion engine is dissipated as frictional losses of which major portion is contributed by the piston ring-cylinder liner tribo pair. Hence, proper design of tribological parameters of piston ring-cylinder liner pair is essential and can effectively reduce the friction and wear, thereby improving the tribological performance of the engine. This paper aims to use surface texturing, an effective and feasible method, to improve the tribological performance of piston ring-cylinder liner tribo pair. Design/methodology/approach In this paper, influence of positive texturing (protruding) on friction reduction and wear resistance of piston ring surfaces was studied. The square-shaped positive textures were fabricated on piston ring surface by chemical etching method, and the experiments were conducted with textured piston ring surfaces against un-textured cylinder liner surface on pin-on-disc apparatus by continuous supply of lubricant at the inlet of contact zone. The parameters varied in this study are area density and normal load at a constant sliding speed. A comparison was made between the tribological properties of textured and un-textured piston ring surfaces. Findings From the experimental results, the tribological performance of the textured piston ring-cylinder liner tribo pair was significantly improved over a un-textured tribo pair. A maximum friction reduction of 67.6 per cent and wear resistance of 81.6 per cent were observed with textured ring surfaces as compared to un-textured ring surfaces. Originality/value This experimental study is helpful for better understanding of the potency of positive texturing on friction reduction and wear resistance of piston ring-cylinder liner tribo pair under lubricated sliding conditions.


2018 ◽  
Vol 70 (1) ◽  
pp. 140-154
Author(s):  
Fanming Meng ◽  
Minggang Du ◽  
Xianfu Wang ◽  
Yuanpei Chen ◽  
Qing Zhang

Purpose The purpose of this study is to investigate the effects of the axial piston pin motion on the tribological performances of the piston skirt and cylinder liner vibration for an internal combustion engine (ICE) under different operation conditions. Design/methodology/approach The dynamic equation for the piston incorporating into axial piston pin motion is derived first. Then, the proposed equation and associated lubrication equations are solved using the Broyden algorithm and difference method, respectively. Moreover, the axial motion of the piston pin and its slap on the cylinder liner are studied under different operation conditions. Findings The axial piston pin motion leads to an overall increase in the friction power consumption. Increments in the ICE speed and lubricant viscosity can augment the axial pin motion and cylinder liner vibration, especially in the power stroke. The said increments cause the instability of the piston motion in the cylinder. The axial motion of piston pin can be restrained through the eccentricity of the piston pin close to the thrust side of the cylinder liner. Originality/value This study conducts detailed discussions of the effect of axial piston pin motion on tribological and dynamic performances for piston skirt-cylinder liner system of an internal combustion engine and gives a helpful reference to analyses and designs of internal combustion engines.


2014 ◽  
Vol 553 ◽  
pp. 582-587
Author(s):  
Bao Cheng Zhang ◽  
Tong Li ◽  
Hai Fei Zhan ◽  
Yuan Tong Gu

A theoretical model is developed for the analysis of piston secondary motion. Based on this model, the slap force of a specific L6 diesel engine was compared when considering different boundary conditions, such as lubricating oil on cylinder liner, surface roughness, deformation of cylinder liner and piston skirt. It is concluded that it is necessary to consider the secondary motion of piston in the analysis of the inner excitation for an internal combustion engine. A more comprehensive consideration of the boundary condition (i.e., more close to the actual condition) will lead to a smaller maximum slap force, and among all boundary conditions considered in this paper, the structural deformation of the piston skirt and cylinder liner is the most influential factor. The theoretical model developed and findings obtained in this study will benefit the future analysis and design of advanced internal combustion engine structures.


Author(s):  
Yu. V. Rozhdestvensky ◽  
◽  
K. V. Gavrilov ◽  
M. A. Izzatulloev ◽  
◽  
...  

The solution to the problem of increasing the motor resource of an internal combustion engine (ICE) is directly related to the reduction of energy losses due to overcoming friction in the elements of systems, mechanisms, and complexly loaded tribo-couplers (TC). Among the mechanical friction losses, a special place isoccupied by the hydromechanical friction losses in the internal combustion engine. The reduction of energy losses to overcome friction is achieved by reducing mechanical losses by limiting the level of loading of the rubbing surfaces, by increasing the proportion of the liquid friction regime for the most critical in terms of reliability resource-determining complex loaded vehicles. For complexly loaded vehicles, the time and magnitude of the acting loads are characteristic, at which the position of the movable element in conjunction is characterized by high eccentricities. Such complexly loaded vehicles include the main and connecting rod bearings of the crankshaft, the “piston guide – cylinder liner” and “piston ring – cylinder liner” couplings, the thrust and thrust bearings of the ICE turbocharger, etc. One of the ways to reduce oil starvation isto texturize the contacting surfaces, which will increase the bearing capacity of a complex bearing due to the creation of many “micro wedges”. In particular, the texturing of the surface of the bearing shells of the crankshaft can be performed in the form of elliptical micro-holes, which allow you to save oil on the friction surface under any operating conditions of the diesel engine. The article provides an overview of the main types of microtexturing of friction surfaces of TC. A calculation model has been created and a calculation analysis program has been developed for the internal combustion engine “crankshaft neck-liner” TC. The calculations ofthe hydromechanical characteristics (HMC) of the vehicle for various types of microtexture were performed using the connecting rod bearing of the diesel engine CHN 13/15 as an example.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3966
Author(s):  
Jarosław Mamala ◽  
Michał Śmieja ◽  
Krzysztof Prażnowski

The market demand for vehicles with reduced energy consumption, as well as increasingly stringent standards limiting CO2 emissions, are the focus of a large number of research works undertaken in the analysis of the energy consumption of cars in real operating conditions. Taking into account the growing share of hybrid drive units on the automotive market, the aim of the article is to analyse the total unit energy consumption of a car operating in real road conditions, equipped with an advanced hybrid drive system of the PHEV (plug-in hybrid electric vehicles) type. In this paper, special attention has been paid to the total unit energy consumption of a car resulting from the cooperation of the two independent power units, internal combustion and electric. The results obtained for the individual drive units were presented in the form of a new unit index of the car, which allows us to compare the consumption of energy obtained from fuel with the use of electricity supported from the car’s batteries, during journeys in real road conditions. The presented research results indicate a several-fold increase in the total unit energy consumption of a car powered by an internal combustion engine compared to an electric car. The values of the total unit energy consumption of the car in real road conditions for the internal combustion drive are within the range 1.25–2.95 (J/(kg · m)) in relation to the electric drive 0.27–1.1 (J/(kg · m)) in terms of instantaneous values. In terms of average values, the appropriate values for only the combustion engine are 1.54 (J/(kg · m)) and for the electric drive only are 0.45 (J/(kg · m)) which results in the internal combustion engine values being 3.4 times higher than the electric values. It is the combustion of fuel that causes the greatest increase in energy supplied from the drive unit to the car’s propulsion system in the TTW (tank to wheels) system. At the same time this component is responsible for energy losses and CO2 emissions to the environment. The results were analysed to identify the differences between the actual life cycle energy consumption of the hybrid powertrain and the WLTP (Worldwide Harmonized Light-Duty Test Procedure) homologation cycle.


2021 ◽  
Author(s):  
Thiago Ebel ◽  
Mark Anderson ◽  
Parth Pandya ◽  
Mat Perchanok ◽  
Nick Tiney ◽  
...  

Abstract When developing a turbocharged internal combustion engine, the choice of turbocharger is usually based on designer experience and existing hardware. However, proper turbocharger design relies on matching the compressor and turbine performance to the engine requirements so that parameters such as boost and back pressure, compressor pressure ratio, and turbine inlet temperatures meet the needs of the engine without exceeding its allowable operating envelope. Therefore, the ultimate measure of a successful turbocharger design is how well it is matched to an engine across various operating conditions. This, in turn, determines whether a new turbocharger is required, or an existing solution can be used. When existing turbocharger solutions are not viable, the engine designer is at a loss on how to define a new turbocharger that meets the desired performance requirements. A common approach in industry has been to scale the performance of an existing turbocharger (compressor and turbine maps) and take these requirements for Original Equipment Manufacturers to possibly match it with a real machine. However, the assumptions made in a basic scaling process are quite simplistic and generally not satisfactory in this situation. A better approach would be to use a validated meanline model for a compressor and turbine instead, allowing to perform an actual preliminary design of such components. Such approach allows to link the engine performance requirements in a very early stage of te component design project and it guides the designer for the design decisions, such as rotor size, variable geometry nozzles, diameter, or shroud trims and others. Therefore, a feasible solution is more likely with design less iterations. This paper describes a methodology for an integrated approach to design and analyze a turbocharged internal combustion engine using commercially available state-of-the-art 1D gas dynamics simulation tool linked to two powerful turbomachinery meanline programs. The outputs of this analysis are detailed performance data of the engine and turbocharger at different engine operating conditions. Two case studies are then presented for a 10-liter diesel truck engine. The first study demonstrates how the programs are used to evaluate an existing engine and reverse engineer an existing turbocharger based only on the available performance maps. Then a second study is done using a similar approach but redesigning a new turbocharger (based on the reverse engineered one) for an increased torque output of the same engine.


2019 ◽  
Vol 181 ◽  
pp. 414-424 ◽  
Author(s):  
German J. Amador Diaz ◽  
Juan P. Gómez Montoya ◽  
Lesme A. Corredor Martinez ◽  
Daniel B. Olsen ◽  
Adalberto Salazar Navarro

Sign in / Sign up

Export Citation Format

Share Document