scholarly journals LncRNA-KCNQ1OT1 Promotes the Odontoblastic Differentiation of Dental Pulp Stem Cells via Regulating miR-153-3p/RUNX2 Axis

Author(s):  
Xiaohui Lu ◽  
Jiawen Zhang ◽  
Yuanzhou Lu ◽  
Jing Xing ◽  
Min Lian ◽  
...  

Abstract Background and Objective: Long non-coding RNAs (LncRNAs) play a key role in the odontoblastic differentiation. This study aimed to explore the role of LncRNA-KCNQ1OT1 in the odontoblastic differentiation of human dental pulp stem cells (DPSCs) and its possible mechanism. Methods: The expression of LncRNA-KCNQ1OT1, miR-153-3p, RUNX2 in the odontoblastic differentiation was detected by qRT-PCR. Interaction between LncRNA-KCNQ1OT1 and miR-153-3p and interaction between miR-153-3p and RUNX2 were detected by dual-luciferase assay. The cell viability of DPSCs was detected by cell counting kit-8 (CCK-8), and the effect of LncRNA-KCNQ1OT1 and miR-153-3p on the odontoblastic differentiation of DPSCs was observed by alizarin red staining, alkaline phosphatase (ALP) activity assay and Western blot for RUNX2, DSPP, DMP-1. Results: During odontoblastic differentiation of DPSCs, the expression of LncRNA-KCNQ1OT1 increased, miR-153-3p expression decreased, and RUNX2 expression increased. Dual-luciferase assay showed that LncRNA-KCNQ1OT1 sponges miR-153-3p and miR-153-3p targets on RUNX2. After LncRNA-KCNQ1OT1 and miR-153-3p expressions of DPSCs were changed, the cell viability was not notably changed, but the odontoblastic differentiation was notably changed which was confirmed with alizarin red staining, ALP activity and Western blot for RUNX2, DSPP, DMP-1. Conclusion: LncRNA-KCNQ1OT1 promotes the odontoblastic differentiation of DPSCs via regulating miR-153-3p/RUNX2 axis, which may provide a therapeutic clue for odontogenesis.

2021 ◽  
Author(s):  
Xiaohui Lu ◽  
Jiawen Zhang ◽  
Yuanzhou Lu ◽  
Jing Xing ◽  
Min Lian ◽  
...  

Abstract Background and Objective: Long non-coding RNAs (LncRNAs) play a key role in the odontoblastic differentiation. This study aimed to explore the role of LncRNA-KCNQ1OT1 in the odontoblastic differentiation of human dental pulp stem cells (DPSCs) and its possible mechanism. Methods: The expression of LncRNA-KCNQ1OT1, miR-153-3p, RUNX2 in the odontoblastic differentiation was detected by qRT-PCR. Interaction between LncRNA-KCNQ1OT1 and miR-153-3p and interaction between miR-153-3p and RUNX2 were detected by dual-luciferase assay. The cell viability of DPSCs was detected by cell counting kit-8 (CCK-8), and the effect of LncRNA-KCNQ1OT1 and miR-153-3p on the odontoblastic differentiation of DPSCs was observed by alizarin red staining, alkaline phosphatase (ALP) activity assay and Western blot for RUNX2, DSPP, DMP-1.Results: During odontoblastic differentiation of DPSCs, the expression of LncRNA-KCNQ1OT1 increased, miR-153-3p expression decreased, and RUNX2 expression increased. Dual-luciferase assay showed that LncRNA-KCNQ1OT1 sponges miR-153-3p and miR-153-3p targets on RUNX2. After LncRNA-KCNQ1OT1 and miR-153-3p expressions of DPSCs were changed, the cell viability was not notably changed, but the odontoblastic differentiation was notably changed which was confirmed with alizarin red staining, ALP activity and Western blot for RUNX2, DSPP, DMP-1.Conclusion: LncRNA-KCNQ1OT1 promotes the odontoblastic differentiation of DPSCs via regulating miR-153-3p/RUNX2 axis, which may provide a therapeutic clue for odontogenesis.


2021 ◽  
Vol 11 (23) ◽  
pp. 11381
Author(s):  
Seung-Ho Kwon ◽  
Hyun-Jeong Jeong ◽  
Bin-Na Lee ◽  
Hyo-Seol Lee ◽  
Hyun-Jung Kim ◽  
...  

Three-dimensionally (3D) cultured dental pulp stem cells (DPSCs) reportedly exhibit superior multi-lineage differentiation capacities and have a higher expression in regeneration-related gene categories compared to conventionally cultured DPSCs. This study aimed to evaluate the effects of various mineral trioxide aggregates (MTAs) on DPSCs cultured in 3D, assessing their cell viability and tissue mineralization properties. We examined the morphology, cell viability, alkaline phosphate (ALP) activity and qualitative alizarin red S staining assay of the DPSCs that reacted with various MTAs, which included ProRoot (PRM), Biodentine (BIO), and Well-Root PT (WRP), in two different culture plates, an ultra-low attachment plate (ULA) and a conventional monolayer plate (2D). As a control, MTA-free and IRM samples were prepared. None of the MTA groups affected the microsphere-forming characteristics of DPSCs that had been cultured in ULA. The DPSCs that were cultured in ULA showed high cell viability in all MTA groups compared to IRM. The mineralization potential was favorable in all MTA groups, with a significantly higher ALP activity among the DPSCs that were cultured in ULA. Among MTAs, the PRM group showed substantially higher ALP activity than the other MTA groups. In conclusion, our results indicate that 3D-cultured DPSCs with various MTAs showed comparable viability and mineralization capacity similar to those cultured without reacting with MTA cement.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2684
Author(s):  
Camila Corral Nunez ◽  
Diego Altamirano Gaete ◽  
Miguel Maureira ◽  
Javier Martin ◽  
Cristian Covarrubias

This study aimed to investigate the cytotoxicity and bioactivity of a novel nanocomposite containing nanoparticles of bioactive glass (nBGs) on human dental pulp stem cells (hDPSCs). nBGs were synthesized by the sol–gel method. Biodentine (BD) nanocomposites (nBG/BD) were prepared with 2 and 5% wt of nBG content; unmodified BD and glass ionomer cement were used as references. Cell viability and attachment were evaluated after 3, 7 and 14 days. Odontogenic differentiation was assessed with alkaline phosphatase (ALP) activity after 7 and 14 days of exposure. Cells successfully adhered and proliferated on nBG/BD nanocomposites, cell viability of nanocomposites was comparable with unmodified BD and higher than GIC. nBG/BD nanocomposites were, particularly, more active to promote odontogenic differentiation, expressed as higher ALP activity of hDPSCs after 7 days of exposure, than neat BD or GIC. This novel nanocomposite biomaterial, nBG/BD, allowed hDPSC attachment and proliferation and increased the expression of ALP, upregulated in mineral-producing cells. These findings open opportunities to use nBG/BD in vital pulp therapies.


2021 ◽  
Author(s):  
Na Li ◽  
Yan Chen ◽  
Ming Yan ◽  
Yanqiu Wang ◽  
Jintao Wu ◽  
...  

Abstract BackgroundThe osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs) contributes to the restoration and regeneration of dental tissues. Previous study indicated that IL-37 has often been identified as an anti-inflammatory factor that affects other pro-inflammatory signals. It is known to be a factor capable of inducing in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). The aims of this study were to explore the effects of IL-37 on the differentiation of DPSCs.MethodsDPSCs were cultured in growth medium with different concentration of IL-37, ALP activity was done to detect the optimal concentration for the following experiments. CCK-8 were conducted to assess the effect of IL-37 on proliferation of DPSCs. To assess differentiation, alkaline phosphatase activity, ALP staining, alizarin red S staining and real‐time RT‐PCR of DSPP, Runx2, ALP, and OSX were measured. Western blot was conducted to examine the levels of autophagy related markers (Beclin1, P62, LC3). ResultsCells cultured with 1 ng/mL IL-37 owned the highest ALP activity. IL-37 enhanced the osteogenic and odontogenic differentiation of DPSCs following upregulated the expression of Beclin1, downregulated the expression of P62, and reduced the ratio of LC3II/I, whereas depletion of autophagy suppressed DPSCs osteogenic and odontogenic differentiation. ConclusionIL-37 increased osteogenic and odontogenic differentiation via autophagy.


2015 ◽  
Vol 36 (5) ◽  
pp. 1725-1734 ◽  
Author(s):  
Shensheng Gu ◽  
Shujun Ran ◽  
Feng Qin ◽  
Dong Cao ◽  
Jia Wang ◽  
...  

Background/Aims: Odontogenic differentiation of human dental pulp stem cells (HDPSCs) is regulated by multiple factors and signaling molecules. However, their regulatory mechanisms are not completely understood. In this study, we investigated the role of Zinc finger and BTB domain-containing 20 (ZBTB20) in odontoblastic differentiation of HDPSCs. Methods: HDPSCs were obtained from human third molars and ZBTB20 expression was examined by qRT-PCR and western blot. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. Results: The expression of ZBTB20 is upregulated in a time-dependent manner during odontogenic differentiation of hDPSCs. Inhibition of ZBTB20 reduced osteogenic medium (OM)-induced odontogenic differentiation, reflected in decreased alkaline phosphatase (ALP) activity, mineralized nodule formation and mRNA expression of odonto/osteogenic marker genes. In contrast, overexpression of ZBTB20 enhanced ALP activity, mineralization and the expression of differentiation marker genes. Furthermore, the expression of IκBa was increased by ZBTB20 silencing in HDPSCs, whereas ZBTB20 overexpression decreased IκBa and enhanced nuclear NF-κB p65. Inhibition of the NF-κB pathway significantly suppressed the odontogenic differentiation of HDPSCs induced by ZBTB20. Conclusion: This study shows for the first time that ZBTB20 plays an important role during odontoblastic differentiation of HDPSCs and may have clinical implications for regenerative endodontics.


2018 ◽  
Vol 63 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Christian Apel ◽  
Patricia Buttler ◽  
Jochen Salber ◽  
Anandhan Dhanasingh ◽  
Sabine Neuss

Abstract In tissue engineering, biomaterials are used as scaffolds for spatial distribution of specific cell types. Biomaterials can potentially influence cell proliferation and extracellular matrix formation, both in positive and negative ways. The aim of the present study was to investigate and compare mineralized matrix production of human dental pulp stem cells (DPSC), cultured on 17 different well-characterized polymers. Osteogenic differentiation of DPSC was induced for 21 days on biomaterials using dexamethasone, L-ascorbic-acid-2-phosphate, and sodium β-glycerophosphate. Success of differentiation was analyzed by quantitative RealTime PCR, alkaline phosphatase (ALP) activity, and visualization of calcium accumulations by alizarin red staining with subsequent quantification by colorimetric method. All of the tested biomaterials of an established biomaterial bank enabled a mineralized matrix formation of the DPSC after osteoinductive stimulation. Mineralization on poly(tetrafluoro ethylene) (PTFE), poly(dimethyl siloxane) (PDMS), Texin, LT706, poly(epsilon-caprolactone) (PCL), polyesteramide type-C (PEA-C), hyaluronic acid, and fibrin was significantly enhanced (p<0.05) compared to standard tissue culture polystyrene (TCPS) as control. In particular, PEA-C, hyaluronic acid, and fibrin promoted superior mineralization values. These results were confirmed by ALP activity on the same materials. Different biomaterials differentially influence the differentiation and mineralized matrix formation of human DPSC. Based on the present results, promising biomaterial candidates for bone-related tissue engineering applications in combination with DPSC can be selected.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Soo-Kyung Jun ◽  
Jung-Hwan Lee ◽  
Hae-Hyoung Lee

The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) activity and alizarin red staining (ARS). Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p<0.05), but TC did not (p>0.05). Ca (~110 ppm) and hydroxide ions (pH 11) were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3925
Author(s):  
Yemi Kim ◽  
Donghee Lee ◽  
Dani Song ◽  
Hye-Min Kim ◽  
Sin-Young Kim

In this study, we assessed the biocompatibility and bioactivity of various pulp capping materials—ProRoot MTA (Dentsply Tulsa Dental Specialties), Biodentine (Septodont), TheraCal LC (Bisco), and Dycal (Dentsply Caulk)—on human dental pulp stem cells (hDPSCs). Experimental disks (diameter, 7 mm; height, 4 mm) were stored in a humified incubator at 37 °C for 48 h. Then, the pulp capping materials were tested for cytotoxic effects by methyl-thiazoldiphenyl-tetrazolium and scratch wound healing assays, and for mineralization potential by Alizarin red S (ARS) staining assay and alkaline phosphatase enzyme (ALP) activity. Cell viability and cell migration did not significantly differ between ProRoot MTA, Biodentine, and control (p > 0.05). TheraCal LC exhibited slower cell migration on days 2–4 compared to control (p < 0.05), and Dycal showed no cell migration. ALP activity was highest with Biodentine on days 10 and 14, and was lowered with TheraCal LC and Dycal (p < 0.05). In the ARS assay, hDPSCs grown in ProRoot MTA and TheraCal LC eluates showed significantly increased mineralized nodule formation on day 21 compared to Biodentine, Dycal, and control (p < 0.05). These findings indicate that ProRoot MTA, Biodentine, and TheraCal LC exhibit better biocompatibility and bioactivity than Dycal.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2252
Author(s):  
Jae Eun Kim ◽  
Sangbae Park ◽  
Woong-Sup Lee ◽  
Jinsub Han ◽  
Jae Woon Lim ◽  
...  

The use of bone graft materials is required for the treatment of bone defects damaged beyond the critical defect; therefore, injectable calcium phosphate cement (CPC) is actively used after surgery. The application of various polymers to improve injectability, mechanical strength, and biological function of injection-type CPC is encouraged. We previously developed a chitosan–PEG conjugate (CS/PEG) by a sulfur (VI) fluoride exchange reaction, and the resulting chitosan derivative showed high solubility at a neutral pH. We have demonstrated the CPC incorporated with a poly (ethylene glycol) (PEG)-grafted chitosan (CS/PEG) and developed CS/PEG CPC. The characterization of CS/PEG CPC was conducted using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The initial properties of CS/PEG CPCs, such as the pH, porosity, mechanical strength, zeta potential, and in vitro biocompatibility using the WST-1 assay, were also investigated. Moreover, osteocompatibility of CS/PEG CPCs was carried out via Alizarin Red S staining, immunocytochemistry, and Western blot analysis. CS/PEG CPC has enhanced mechanical strength compared to CPC, and the cohesion test also demonstrated in vivo stability. Furthermore, we determined whether CS/PEG CPC is a suitable candidate for promoting the osteogenic ability of Dental Pulp Stem Cells (DPSC). The elution of CS/PEG CPC entraps more calcium ion than CPC, as confirmed through the zeta potential test. Accordingly, the ion trapping effect of CS/PEG is considered to have played a role in promoting osteogenic differentiation of DPSCs. The results strongly suggested that CS/PEG could be used as suitable additives for improving osteogenic induction of bone substitute materials.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Paula A. Baldión ◽  
Myriam L. Velandia-Romero ◽  
Jaime E. Castellanos

Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC) were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1), and OLC expanded after trypsinization (EXP-21) were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry.


Sign in / Sign up

Export Citation Format

Share Document