Optimization of Electrodeposition Time on the Properties of Cu2ZnSnS4 Thin Films for Thin Film Solar Cell Applications

Author(s):  
Muhammad Aamir Shafi ◽  
Amal Bouich ◽  
Laiq Khan ◽  
Hanif Ullah ◽  
Julia Mari Guaita ◽  
...  

Abstract Electrochemical deposition was used to create a quaternary CZTS (Cu2ZnSnS4) kesterite thin layer. An aqueous solution of CZTS was used to deposit a thin layer over Indium Tin Oxide. The effects of deposition time (variation) on CZTS thin films under ambient conditions were investigated in this study. Several available characterization systems were used to study the samples as they were produced. The polycrystalline description of the layer is inveterate by X-ray diffraction (XRD). The SEM as well as AFM study show that deposition time improved surface morphology and topography of CZTS thin films which increase several nm in grain size. Furthermore, depending upon the deposition duration, the optical study reveals an acceptable bandgap in a range of 1.44 to 1.71 eV. Characteristics of high-quality CZTS absorber layers for solar cell applications are discovered to be affected by deposition time variation. To check the effect of this bandgap variation (1.44 to 1.71 eV) on the performance of a CZTS based thin film solar cell, a simulation software SCAPS-1D is being used.

Author(s):  
Nafis Ahmed ◽  
Arokiyadoss Rayerfrancis ◽  
P. Balaji Bhargav ◽  
Balaji C ◽  
P. Ramasamy

Al-doped ZnO (AZO) thin films are deposited using dc magnetron sputtering and the process conditions are optimized to obtain TCE with desirable properties suitable for photovoltaic applications. In the course, the effects of deposition parameters such as growth temperature, deposition time and plasma power density on the structural and optoelectronic properties were investigated using suitable characterization techniques. XRD analysis of the deposited films at different process conditions showed a strong c-axis preferred orientation. The surface roughness of the deposited films was examined using AFM analysis. Elemental analysis was carried out using XPS. The resistivity and sheet resistance of the thin films decreased with increase in temperature, deposition time and power density. The optimized films deposited at 250°C resulted in electrical resistivity of 6.23 x10-4 Ωcm, sheet resistance of 9.2 Ω/□ and exhibited an optical transmittance of >85% in the visible range. FOM calculations were carried out to analyze the suitability of deposited thinfilms for thin film amorphous silicon solar cell applications. The photo gain of optimized intrinsic a-Si:H layer was in the range of 104, whereas no photo gain was observed in doped a-Si:H layers. The thin film solar cell fabricated using the optimized AZO film as TCE exhibited power conversion efficiency of 6.24% when measured at AM 1.5 condition.


2021 ◽  
Vol 23 (09) ◽  
pp. 1196-1206
Author(s):  
C.S.A. Raj ◽  
◽  
S. Sebastian ◽  
Susai Rajendran ◽  
◽  
...  

Cu2ZnSnS4 generally abridged as CZTS is a potential material for economical thin film solar cells, due to its appropriate band gap energy of around 1.5 eV and great absorption coefficient of above 104 cm-1. All the constituents of this material are plentiful in the earth’s crust, and they are non-hazardous making it an elegant alternative. Subsequent to the early achievement of the CZTS based solar cell with its light to electrical conversion efficiency of 0.6%, significant advancement in this research area has been attained, particularly in the last seven years. Currently, the conversion effectiveness of the CZTS thin film solar cell has enhanced to 24%. More than 500 papers on CZTS have been available and the greater part of these converses the preparation of CZTS thin films by diverse methods. Until now, many physical and chemical methods have been engaged for preparing CZTS thin films. Amongst them, spray pyrolysis is a flexible deposition technique. Spray pyrolysis is a simple deposition technique that finds use in widespread areas of thin film deposition research. This method is appropriate for depositing good quality films with low cost, clean deposition, and simplicity and flexibility in the manufacturing design. This script, reviews the synthesis of CZTS semiconductor thin films deposited by spray pyrolysis. This analysis initiates with a portrayal of the spray pyrolysis system, and then establish the CZTS and preparation of the CZTS precursor for coating. A review of spray pyrolysis of CZTS thin films are discussed in detail. To conclude, we present perspectives for advancements in spray pyrolysis for a CZTS based solar cell absorber layer.


2017 ◽  
Vol 621 ◽  
pp. 240-246 ◽  
Author(s):  
Puvaneswaran Chelvanathan ◽  
Kazi S. Rahman ◽  
Mohammad I. Hossain ◽  
Haroon Rashid ◽  
Norazlynda Samsudin ◽  
...  

Solar Energy ◽  
2018 ◽  
Vol 173 ◽  
pp. 120-125 ◽  
Author(s):  
Ameen M. Ali ◽  
Yulisa Yusoff ◽  
Lamya M. Ali ◽  
Halina Misran ◽  
Md. Akhtaruzzaman ◽  
...  

2015 ◽  
Vol 3 (38) ◽  
pp. 19263-19267 ◽  
Author(s):  
Dandan Zhao ◽  
Qingwen Tian ◽  
Zhengji Zhou ◽  
Gang Wang ◽  
Yuena Meng ◽  
...  

A novel, robust and low-toxicity solution route to deposit CIGSe thin films for solar cell applications is proposed. The solvent of 1,2-ethanedithiol and 1,2-ethylenediamine is employed for the first time to simultaneously dissolve elemental Cu, In, Ga, and Se. With this solution-processed CIGSe thin film solar cell, an efficiency of 9.5% was achieved.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 37621-37627 ◽  
Author(s):  
Dhruba B. Khadka ◽  
SeongYeon Kim ◽  
JunHo Kim

We report a promising fabrication approach for the synthesis of Ge-alloyed Cu2Zn(GexSn1−x)Se4 (CZGTSe) thin films using molecular precursors by spray pyrolysis to obtain band gap tuned kesterite solar cells.


2001 ◽  
Vol 65 (1-4) ◽  
pp. 141-148 ◽  
Author(s):  
Hironori Katagiri ◽  
Kotoe Saitoh ◽  
Tsukasa Washio ◽  
Hiroyuki Shinohara ◽  
Tomomi Kurumadani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document