scholarly journals Organic Vegetable Crop Production in Controlled Environments Using Soilless Media

2017 ◽  
Vol 27 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Mary A. Rogers

Organic vegetables produced in greenhouses and other controlled environments may fill a unique market niche as consumers demand local, high vegetables year round. However, limited technical information supports these production systems and more research is needed to provide recommendations for appropriate substrate mixes and nutrient management. Compost can be used as a substitute for peat-based media, and research results vary widely based on feedstock, compost method, and proportion used in mixes. Most studies consider compost in terms of peat-substitute or replacement and not as a source of fertility in soilless systems. Common challenges in using compost in soilless media are due to immaturity of the compost, poor water holding capacity, and unbalanced salinity and pH. It is possible to certify organic soilless production systems; however, the National Organic Program (NOP) of the U.S. Department of Agriculture has not yet provided clear rules and requirements supporting these systems. The objective of this article is to review the literature on soilless organic vegetable production, summarize results from the more widely studied topic of vegetable transplant production, and point to future research for organic agriculture.

2016 ◽  
Vol 108 (3) ◽  
pp. 1142-1154 ◽  
Author(s):  
Craig G. Cogger ◽  
Andy I. Bary ◽  
Elizabeth A. Myhre ◽  
Ann-Marie Fortuna ◽  
Doug P. Collins

Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 732
Author(s):  
Zhonghua Bian ◽  
Yu Wang ◽  
Xiaoyan Zhang ◽  
Tao Li ◽  
Steven Grundy ◽  
...  

Excessive accumulation of nitrates in vegetables is a common issue that poses a potential threat to human health. The absorption, translocation, and assimilation of nitrates in vegetables are tightly regulated by the interaction of internal cues (expression of related genes and enzyme activities) and external environmental factors. In addition to global food security, food nutritional quality is recognized as being of strategic importance by most governments and other agencies. Therefore, the identification and development of sustainable, innovative, and inexpensive approaches for increasing vegetable production and concomitantly reducing nitrate concentration are extremely important. Under controlled environmental conditions, optimal fertilizer/nutrient element management and environmental regulation play vital roles in producing vegetables with low nitrate content. In this review, we present some of the recent findings concerning the effects of environmental factors (e.g., light, temperature, and CO2) and fertilizer/nutrient solution management strategies on nitrate reduction in vegetables grown under controlled environments and discuss the possible molecular mechanisms. We also highlight several perspectives for future research to optimize the yield and nutrition quality of leafy vegetables grown in controlled environments.


2020 ◽  
Vol 58 (1) ◽  
pp. 277-311 ◽  
Author(s):  
Erin Rosskopf ◽  
Francesco Di Gioia ◽  
Jason C. Hong ◽  
Cristina Pisani ◽  
Nancy Kokalis-Burelle

The loss of methyl bromide as a soil fumigant and minimal advances in the development and registration of new chemical fumigants has resulted in a resurgence of interest in the application of organic amendments (OAs) for soilborne plant pathogen and plant-parasitic nematode management. Significant progress has been made in the characterization of OAs, application of strategies for their use, and elucidation of mechanisms by which they suppress soilborne pests. Nonetheless, their utility is limited by the variability of disease control, expense, and the logistics of introducing them into crop production systems. Recent advances in molecular techniques have led to significant progress in the elucidation of the role of bacteria and fungi and their metabolic products on disease suppression with the addition of OAs. Biosolarization and anaerobic soil disinfestation, developed to manipulate systems and favor beneficial microorganisms to maximize their impact on plant pathogens, are built on a strong historical research foundation in OAs and the physical, chemical, and biological characteristics of disease-suppressive soils. This review focuses on recent applications of OAs and their potential for the management of soilborne plant pathogens and plant-parasitic nematodes, with emphasis primarily on annual fruit and vegetable production systems.


2015 ◽  
Vol 66 (12) ◽  
pp. 1230 ◽  
Author(s):  
Ch. Srinivasarao ◽  
Sumanta Kundu ◽  
K. L. Sharma ◽  
Sharanbhoopal Reddy ◽  
A. L. Pharande ◽  
...  

Magnesium (Mg) plays a vital role in photosynthesis, dry matter production and carbon partitioning in sink organs. Hence, four permanent manurial experiments (20–27 years of duration) under the auspices of All India Coordinated Research Project for Dryland Agriculture (AICRPDA) network centres across diverse agro-ecological regions were carried out to examine the soil exchangeable Mg (ex-Mg), crop uptake and overall Mg balance. Groundnut (peanut), finger millet, rice–lentil sequence and post rainy sorghum were the major crops or cropping systems followed in four permanent manure experiments at Anantapuram, Bengaluru, Varanasi and Solapur, respectively. Nutrient management in all experiments involved control (no addition of nutrients), 100% organic, 100% chemical, and integration of organic and chemical. Except in the finger millet-based system, mean ex-Mg status in the entire profile was higher than the sufficiency level (1.0 cmol(+) kg–1 as a critical limit). Status of ex-Mg (cmol(+) kg–1 soil) in soil profiles was in the order: Solapur (3.80) > Varanasi (2.07) > Anantapuram (1.06) > Bengaluru (0.44). A uniform distribution of ex-Mg was observed in plots that received integrated application of organic and chemical fertilisers. In general, improved status of profile ex-Mg (cmol(+) kg–1) over the control was observed in soils under groundnut (0.19–0.78), finger millet (1.90–3.20), and post rainy sorghum (6.50–7.60, except 4.20 in 100% NPK) cropping. Overall, ex-Mg status and balance of different soil types under diverse crop production systems was influenced by several factors, some of which include soil type with varying mineralogy, particle size distribution, nutrient management strategies and rainfall. Significant positive relationships were observed between ex-Mg status and clay content (R2 = 0.94), soil pH (R2 = 0.92), cation exchange capacity (R2 = 0.98) and mean air temperature (R2 = 0.22), whereas a weak relationship was observed with rainfall (R2 = 0.01). The study gives an account of Mg balance in major Indian soil types and recommends further attention on Mg nutrition in current intensive agriculture.


2015 ◽  
Vol 66 (12) ◽  
pp. 1213 ◽  
Author(s):  
A. R. Dechen ◽  
Q. A. C. Carmello ◽  
F. A. Monteiro ◽  
R. C. Nogueirol

The Second International Symposium on Magnesium was held in São Paulo, Brazil, in November 2014. An overview of the role of magnesium in food production was the theme of the opening session of that meeting. This paper considers agricultural production systems, mainly in terms of sustainability, fertiliser-use efficiency and food security, with emphasis on soils of tropical regions. Magnesium in soils and plants, as well as in relation to other nutrients and to other agricultural production factors, is especially covered. Finally, the role of magnesium is considered in terms of plant and animal health, nutrient management and the need of future research.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

The five Rs of nutrient stewardship is a mnemonic device used to emphasize accuracy and precision for nutrient management so as to apply the (1) right source of fertilizer at the (2) right rate at the (3) right time in the (4) right place with the (5) right irrigation. Because the majority of Florida's soils are sandy, this fifth R is imperative for sustainable nutrient management for commercial crop production. These main points of nutrient management (source, rate, time, place, irrigation) may help enhance sustainability by reducing pollution by eutrophication, nitrogen loss through ammonia volatilization, and climate change from soil greenhouse gas emission. This new 8-page publication of the UF/IFAS Horticultural Sciences Department was written by Mary Dixon and Guodong Liu.https://edis.ifas.ufl.edu/hs1386


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1060
Author(s):  
Mary E. Hummerick ◽  
Christina L. M. Khodadad ◽  
Anirudha R. Dixit ◽  
Lashelle E. Spencer ◽  
Gretchen J. Maldonado-Vasquez ◽  
...  

The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. ‘Outredgeous’); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann’s) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.


2011 ◽  
Vol 21 (6) ◽  
pp. 663-666 ◽  
Author(s):  
Mark Gaskell ◽  
Tim Hartz

Nutrient management practices must be tailored to the crop, environment, and production system if nutrient efficiency and environmental water quality protection are to be achieved. This requires consideration of fertilizer choice, placement, application rate, and timing. These factors have been characterized as the “4Rs” of nutrient stewardship—right material, right placement, right rate, and right timing. The factors affecting the choice of fertilizer material have been described previously for agronomic crops, and include plant nutritional requirements, soil conditions, fertilizer delivery issues, environmental risks, product price, and economic constraints. Although those factors are applicable to all crops, the unique features of intensive horticultural production systems affect their interactions. This article discusses fertilizer choice as it affects productivity, profitability, sustainability, and environmental impact of intensive horticultural crop production. Diverse fertilizer materials are available for specialized application to provide nitrogen, phosphorus, potassium, and other plant nutrients for different horticultural needs. These fertilizer sources can be formulated as dry or liquid blends, but increasingly higher solubility materials are used to target plant growth needs even in field operations. Composts can have useful applications—particularly for certified organic production—but their high cost, bulk, and relatively low efficiency limit their use. Profitability can be affected by fertilizer cost—typically a relative small percentage of overall costs in intensive production systems—and the improved efficiency of these specialized materials often improves profitability. There are also sustainability issues with the manufacture, transport, and efficient use of different fertilizer sources. Such factors as soil chemical reaction changes, effects on soil salinity, and loss of organic matter also can adversely affect sustainability, but systems are available to maintain soil quality while using more efficient fertilizer sources.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 170a-170
Author(s):  
Victor A. Wegrzyn

Sustainable production systems are characterized as systems that can be physically and biologically maintained in perpetuity, can avoid adverse environmental and health problems, and can be economically profitable. Organic vegetable production systems are one example of sustainable farming enterprises. In California, organic production and postharvest handling techniques are closely defined by legislation. Of the several grower groups representing organic farmers in the state, the California Certified Organic Farmers is the largest, representing 382 growers that farmed a total area of 10,375 ha in 1988. Of these, 200 growers are vegetable producers. Another organization active among organic growers in California, as well as Mexico, Central American countries, and the Caribbean, is the Organic Crop Improvement Association. Marketing organizations such as the Nutri-Clean Program, which tests produce for pesticide residues and certifies specific residue standards, and the Organic Market News and Information Service facilitate the sale of organic produce in California. Cultural practice information for organic vegetable production is difficult to find, particularly techniques that would allow a grower to switch from conventional to organic production. University researchers and extension workers have so far been of little help, although the Univ. of California Sustainability Program at Davis is beginning research and education activities. Funding for these activities is inadequate, and the program is understaffed. There is need for long-term, interdisciplinary, on-farm studies to study organic production techniques in a realistic setting. At present, the reward system in place in land-grant institutions offers little encouragement to researchers to engage in this kind of work. There are formidable obstacles to increasing the use of organic materials for crop fertilization. The nutrient content of the state's manure and organic waste supplies is probably insufficient to meet the fertility needs of California's crops. In addition, since the majority of land currently producing vegetable crops in California is leased, long-term soil fertility investments are a risky undertaking.


2006 ◽  
Vol 5 (2) ◽  
pp. 314-320
Author(s):  
J.O. Ogunwole . ◽  
A.B. Lawal . ◽  
J.D. Olarewaju . ◽  
K. Audu . ◽  
D.I. Adekpe . ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document