scholarly journals Fertilizer Source Affects Nutrient Losses from Hybrid Bermudagrass during Surface Runoff

2019 ◽  
Vol 29 (6) ◽  
pp. 952-957 ◽  
Author(s):  
Kayla R. Sanders ◽  
Jeffrey S. Beasley

Controlled-release fertilizers (CRFs) provide an extended period of nutrient availability for turfgrass growth and may limit offsite nutrient losses compared with water-soluble fertilizers (WSFs). However, increasing temperatures and soil moisture accelerate nutrient release from many CRFs. As a result, turfgrass managers growing turfgrass in warm, humid climates with high rainfall question how effective CRFs are in reducing nutrient runoff losses while maintaining aesthetic quality. A study was conducted to examine the effect of three fertilizer treatments—an unfertilized control, a CRF applied at 87 lb/acre nitrogen (N), and a WSF applied at 87 lb/acre N as a split application (43.5 lb/acre N) at 0 and 45 d after initial fertilization (DAIF)—on nutrient losses from ‘Tifway’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) during surface runoff events. Rainfall simulations were conducted 3, 28, 56, and 84 DAIF at an intensity of 3 inches per hour to induce 30 minutes of runoff. Water samples were analyzed for inorganic N and dissolved total phosphorus (DTP). Hybrid bermudagrass quality was similar among fertilizer treatments with CRF application, resulting in slightly higher quality. Across all fertilizer treatments, hybrid bermudagrass exhibited similar runoff initiation time and volumes within each rainfall simulation event. Nutrient losses from fertilized hybrid bermudagrass were greatest at the first runoff event at 3 DAIF, with WSF having the greatest losses. The subsequent application of WSF 45 DAIF did not result in greater N and DTP losses compared with CRF application, most likely a result of water incorporation applied to prevent wilting. Hybrid bermudagrass fertilized with a single application of CRF resulted in 23.6% and 55.6% reductions in cumulative inorganic N and DTP losses, respectively, compared with hybrid bermudagrass fertilized with the a split application of WSF.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246505
Author(s):  
Yiwen Yao ◽  
Quanhou Dai ◽  
Ruxue Gao ◽  
Yixian Gan ◽  
Xingsong Yi

Nutrient losses from sloping farmland in karst areas lead to the decline in land productivity and nonpoint source pollution. A specially tailored steel channel with an adjustable slope and underground hole fissures was used to simulate the microenvironment of the "dual structure" of the surface and underground of sloping farmland in a karst area. The artificial rainfall simulation method was used to explore the surface and underground runoff characteristics and nutrient losses from sloping farmland under different rainfall intensities. The effect of rainfall intensity on the nutrient loss of farmland on karst sloping land was clarified. The results showed that the surface was the main route of runoff and nutrient loss during the rainy season on sloping farmland in karst areas. The influence of rainfall intensity on the nutrients in surface runoff was more substantial than that on underground runoff nutrients. Nutrient loss was more likely to occur underground than on the surface. The losses of total nitrogen, total phosphorus, and total potassium in surface and underground runoff initially increased and then gradually stabilized with the extension of rainfall duration and increased with increasing rainfall intensity and the amount of nutrient runoff. The output of nutrients through surface runoff accounted for a high proportion of the total, and underground runoff was responsible for a low proportion. Although the amount of nutrients output by underground runoff was small, it could directly cause groundwater pollution. The research results provide a theoretical reference for controlling land source pollution from sloping farming in karst areas.


1994 ◽  
Vol 74 (1) ◽  
pp. 59-66 ◽  
Author(s):  
B. T. Bowman ◽  
G. J. Wall ◽  
D. J. King

The risk of surface-water contamination by herbicides is greatest following application to cropland when the active ingredients are at the maximum concentration and the soil is the most vulnerable to erosion following cultivation. This study determined the magnitude of surface runoff losses of herbicide and nutrients at, and subsequent to, application. The first of three weekly 10-min, 2.6-cm rainfalls were simulated on triplicated 1-m plots (a set) on which corn had been planted and the herbicide (metolachlor/atrazine, 1.5:1.0) and fertilizer (28% N at 123 kg ha−1) had just been applied. Identical simulations were applied to two other adjacent plot sets (protected from rainfall) 1 and 2 wk following herbicide application. Runoff (natural, simulated) was monitored for soil, nutrient and herbicide losses. Concentrations of total phosphorus in surface runoff water and nitrate N in field-filtered samples were not significantly influenced by the time of the rainfall simulation but exceeded provincial water-quality objectives. Atrazine and metolachlor runoff losses were greatest from simulated rainfall (about 5% loss) immediately following application. Subsequent simulated rainfall usually resulted in < 1% herbicide runoff losses. Herbicide concentrations in all plot runoff samples exceeded provincial drinking-water quality objectives. Since herbicide surface transport is primarily in the solution phase (not via association with soil particles), water-management conservation technologies are the key to retaining these chemicals on cropland. Key words: Herbicide, runoff, rainfall simulation, partitioning, water quality


2013 ◽  
Vol 68 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
Haixia Guo ◽  
Geng Sun ◽  
Fusun Shi ◽  
Tao Lu ◽  
Qian Wang ◽  
...  

Wenchuan Earthquake triggered a large number of geological hazards, dramatically stimulating soil erosion. This study was carried out in Pengzhou County, Sichuan Province. By comparison of sediment, runoff and nutrient losses in earthquake-damaged forests (EF) and unaffected forests (UF), the actual status of soil erosion after the Wenchuan Earthquake was investigated by runoff plots. Results showed that water and soil losses were dramatically increased after earthquake. During the study period (from August to November 2010), UF runoffs were 19.26, 36.76, 10.68 and 7.51 L m−2, while total runoffs in EF sites were 30.41, 25.79, 5.03 and 2.67 L m−2 respectively, which were 15, 15, 18 and 19 times more than those in UF. Total sediment losses in EF sites were 28.94, 25.16, 4.11 and 1.98 t km−2 respectively while in UF they were 707.69, 610.05, 113.43 and 58.95 t km−2 respectively during the same study period, i.e. 23, 23, 32 and 29 times more than those in UF. Path analysis showed that both vegetation and rainfall exerted an indirect influence on sediment loss by significantly influencing runoff, which correlated with sediment loss very significantly. Although no obvious differences of the nutrients’ concentration in runoff water (soluble organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK)) between EF and UF sites were observed, total losses of the four nutrients were significantly higher in EF than in UF sites (for example, in EF sites, SOC, TN, TP and TK losses were 970.52, 114.46, 2.26 and 307.00 g m−2 respectively, while in UF they were 38.13, 4.22, 0.10 and 13.28 g m−2) due to significantly higher runoff in EF sites. In conclusion, soil erosion was significantly more serious due to the loss of forested lands resulting from the Wenchuan Earthquake, delaying the restoring process of forest cover and weakening the ecological linkage between upstream and downstream.


Author(s):  
Kamble Ravindra K. ◽  
Chauhan Chetan S. ◽  
Kamble Priyadarshani R. ◽  
Naruka Pushpendra S.

The main aim of the present work was to develop the microcapsules of tramadol hydrochloride for the oral sustained release drug delivery. Tramadol hydrochloride a BCS class I drug a centrally acting synthetic analgesic was complexed with Indion 254 ion exchange resin. The microcapsules were prepared by encapsulating the prepared resinates by o/o solvent evaporation technique. In the investigation 32 full factorial design was used to investigate the joint influence of two formulation variable amount of eudragit RS 100 and plasticized PEG 400. The results of multiple linear regression analysis indicated that for obtaining a sustained release drug delivery the optimum concentrations of both the plasticizer and coating solution to be used. The factorial models were used to prepare optimized microcapsules and optimized formulations showed sustained release profiles for the extended period of more than 12 hrs. From the present investigations concluded that resinate microcapsules of highly water soluble drug can provide controlled release of drug for extended period.Key Words: Tramadol hydrochloride, ion exchange resinate, microcapsules, sustained release


2003 ◽  
Vol 34 (5) ◽  
pp. 531-542 ◽  
Author(s):  
Arvo lital ◽  
Enn Loigu ◽  
Nils Vagstad

The paper deals with nutrient runoff monitoring results and calculated nutrient budgets on catchment level in small agricultural watersheds in Estonia. A special programme for monitoring of nutrient losses was initiated and a network of monitoring stations, equipped with data-loggers and suitable devices for continuous flow measurement and flow-proportional automatic water sampling were established in Estonia in the mid-1990s. The research methodology is harmonized with the Nordic countries as well as with the other Baltic countries. The results indicate that nutrients losses are relatively low (generally below 11 kg N/ha and 0.9 kg P/ha). It can be partly explained by drastic changes in the Estonian agricultural practice in the 1990s but also by differences in runoff regime. Nutrient balances were calculated for two catchments, based on the data collected from the farms, some special studies and water quality monitoring results in two watersheds in 1995 (1999) - 2001. The nutrient balances for the catchments turned positive after being negative both for nitrogen and phosphorus in the mid-1990s.


1987 ◽  
Vol 19 (8) ◽  
pp. 75-86 ◽  
Author(s):  
S. P. Amaral

The technology of treatment through landfarming for oily wastes has been more and more often utilized in Brazil, always successfully. The definition, the processes which occur, as well as the factors which affect its performance are herein presented. Design parameters, such as location, ground characterization, dimensioning of the area of application, groundwater protection, drainage, treatment of surface runoff water and percolated liquid, among others, are presented. Operational procedures and quality monitoring of effluents and environment are also described. PETROBRÁS is already operating two landfarming systems and has several others in the design stage. We present data from these projects and report that oily waste degradation has been achieved in around six months. Finally, we expect to be contributing to the affirmation and development of this technology in our Country.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1851-1856 ◽  
Author(s):  
J. L. Lai ◽  
K. S. L. Lo

A mixing-based model for describing solute transfer to overland flow was developed. This model included a time-dependent mixing depth of the top layer and a complete-mixed surface runoff zone. In a series of laboratory experiments, runoff was passed at various velocities and depths over a medium bed. The media were saturated with uniform concentration of potassium chloride solution. Runoff water was sampled at the beginning and end of the flume and the potassium chloride concentration analyzed. Using this model, dimensionless ultimate mixing depth and dimensionless change rate of mixing depth from experimental data were investigated and implemented. The results showed that the Reynolds number and relative roughness are two important factors.


Soil Research ◽  
2009 ◽  
Vol 47 (6) ◽  
pp. 555 ◽  
Author(s):  
Michael G. Jones ◽  
R. Willem Vervoort ◽  
Julie Cattle

Understanding the process by which nutrients and solids enter waterways from pastures in the Great Lakes district, New South Wales, Australia, may assist in maintaining water quality to ensure ongoing environmental and economic sustainability of the region. Rainfall simulations, using a 100-year return storm event, were conducted to determine nutrient and suspended solid concentrations in the runoff of 8 pasture sites in 3 of the catchments in the district. On 5 of the 8 sites, considerable concentrations of N or P were mobilised during the simulated rainfall event, but average nutrient concentrations and total loads across all sites were relatively low and similar to other studies of nutrient runoff from pastures. In addition, low runoff coefficients indicated that runoff is probably not the major pathway for nutrient losses from pasture in this area. Overall, rainfall runoff responses at the sites were similar in the 3 catchments. In contrast, the results suggest that, despite generating more runoff, the sites in the Wang Wauk catchment generated less nutrients in runoff than the sites in the Wallamba and Myall catchments. There was no difference in total suspended solids loads for the sites analysed by catchment. Relationships between soil physical and chemical characteristics and total nutrients loads or cumulative runoff were not strong.


2012 ◽  
Vol 16 (12) ◽  
pp. 4725-4735 ◽  
Author(s):  
M. Temesgen ◽  
S. Uhlenbrook ◽  
B. Simane ◽  
P. van der Zaag ◽  
Y. Mohamed ◽  
...  

Abstract. Adoption of soil conservation structures (SCS) has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage (CT) involving contour plowing and the construction of invisible subsoil barriers using a modified Maresha winged "subsoiler" is suggested as a means to tackle these problems as an integral part of the SCS. We investigated the effect of integrating the CT with SCS on the surface runoff, water-logging, soil loss, crop yield and plowing convenience. The new approach of conservation tillage has been compared with traditional tillage (TT) on 5 farmers' fields in a high rainfall area in the upper Blue Nile (Abbay) river basin. Test crops were wheat [triticum vulgare] and tef [eragrostis tef]. Farmers found CT convenient to apply between SCS. Surface runoff appeared to be reduced under CT by 48 and 15%, for wheat and tef, respectively. As a result, CT reduced sediment yield by 51 and 9.5%, for wheat and tef, respectively. Significantly reduced water-logging was observed behind SCS in CT compared to TT. Grain yields of wheat and tef increased by 35 and 10%, respectively, although the differences were not statistically significant apparently due to high fertility variations among fields of participating farmers. Farmers who tested CT indicated that they will continue this practice in the future.


2015 ◽  
Vol 60 (1) ◽  
pp. 235-242
Author(s):  
Qingqing Fang ◽  
Lei Zhang ◽  
Haotian Sun ◽  
Guoqiang Wang ◽  
Zongxue Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document