Crop–hedgerow intercropping systems are important agroforestry systems for preventing soil degradation and soil nutrient losses on sloping cultivated land in the Three Gorges Reservoir (TGR) area of China. However, the mechanism by which hedgerow spatial layouts and the planting patterns affect soil nutrients and crop yields is still uncertain. A two-year field experiment was performed on a 10° slope to investigate the effects of slope position and different crop–hedgerow intercropping systems on soil physicochemical properties and crop yields. The treatments were a two-belt mulberry contour hedgerow (TM), a two-belt compound mulberry–vetiver hedgerow (TCMV), a two-belt compound mulberry–alfalfa hedgerow (TCMA), a seven-year-old two-belt mulberry contour hedgerow (7YTM), a seven-year-old mulberry border hedgerow (7YBM), a seven-year-old pure mulberry (7YPM), and a control treatment (CT, no hedgerows). In all treatments, except 7YPM, there was a significant (p < 0.05) increase in crop yield, clay content, soil total nitrogen (STN), acid-hydrolyzable nitrogen (AHN), and soil organic carbon (SOC) with declining slope position, whereas soil bulk density (BD), sand content, and soil pH showed the opposite trend. In TM, TCMV, TCMA, and 7YTM, the mustard yields and soil properties were better than those in CT, and there was no significant (p > 0.05) difference in mustard yield or soil properties between the upper-middle and lower-middle slope positions. Compared with CT, TCMV, and TCMA increased mustard yields by 8.28% and 9.86%, respectively, while 7YTM, 7YBM, and 7YPM reduced mustard yields by 7.69%, 17.69%, and 29.73%, respectively. TCMV and TCMA were confirmed to be viable intercropping systems for significantly reducing nutrient losses, improving soil quality, and changing soil nutrient distributions to maintain optimum crop yields on sloping lands.