Long-Term Observations of Nitrogen and Phosphorus Export in Paired-Agricultural Watersheds under Controlled and Conventional Tile Drainage

2015 ◽  
Vol 44 (5) ◽  
pp. 1589-1604 ◽  
Author(s):  
M. D. Sunohara ◽  
N. Gottschall ◽  
G. Wilkes ◽  
E. Craiovan ◽  
E. Topp ◽  
...  
2014 ◽  
Vol 80 (12) ◽  
pp. 3708-3720 ◽  
Author(s):  
Graham Wilkes ◽  
Julie Brassard ◽  
Thomas A. Edge ◽  
Victor Gannon ◽  
Natalie Gottschall ◽  
...  

ABSTRACTSurface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig)Bacteroidalesmarkers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences ofSalmonellaspp. andArcobacterspp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the levelP= 0.06. The odds ofSalmonellaspp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet forArcobacterspp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization.


2000 ◽  
Vol 29 (4) ◽  
pp. 1262-1274 ◽  
Author(s):  
David A. Kovacic ◽  
Mark B. David ◽  
Lowell E. Gentry ◽  
Karen M. Starks ◽  
Richard A. Cooke

2003 ◽  
Vol 34 (5) ◽  
pp. 531-542 ◽  
Author(s):  
Arvo lital ◽  
Enn Loigu ◽  
Nils Vagstad

The paper deals with nutrient runoff monitoring results and calculated nutrient budgets on catchment level in small agricultural watersheds in Estonia. A special programme for monitoring of nutrient losses was initiated and a network of monitoring stations, equipped with data-loggers and suitable devices for continuous flow measurement and flow-proportional automatic water sampling were established in Estonia in the mid-1990s. The research methodology is harmonized with the Nordic countries as well as with the other Baltic countries. The results indicate that nutrients losses are relatively low (generally below 11 kg N/ha and 0.9 kg P/ha). It can be partly explained by drastic changes in the Estonian agricultural practice in the 1990s but also by differences in runoff regime. Nutrient balances were calculated for two catchments, based on the data collected from the farms, some special studies and water quality monitoring results in two watersheds in 1995 (1999) - 2001. The nutrient balances for the catchments turned positive after being negative both for nitrogen and phosphorus in the mid-1990s.


Geoderma ◽  
2017 ◽  
Vol 285 ◽  
pp. 57-63 ◽  
Author(s):  
Qinggong Mao ◽  
Xiankai Lu ◽  
Kaijun Zhou ◽  
Hao Chen ◽  
Xiaomin Zhu ◽  
...  

2005 ◽  
Vol 85 (1) ◽  
pp. 81-93 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
F. Selles ◽  
P. G. Jefferson ◽  
B. G. McConkey ◽  
...  

Assessment of the long-term impact of fertilizers and other management factors on crop production and environmental sustainability of cropping systems in the semi-arid Canadian prairies is needed. This paper discusses the long-term influence of N and P fertilizers on crop production, N uptake and water use of hard red spring wheat (Triticum aestivum L.), and the effect of the preceding crop type [flax (Linum usitatissimum L.) and fall rye (Secale cereale L.)] on wheat grown on a medium-textured, Orthic Brown Chernozem at Swift Current, Saskatchewan. We analysed 36 yr of results (1967–2002) from eight crop rotation-fertility treatments: viz., fallow-wheat receiving N and P (F-W, N + P), three F-W-W treatments fertilized with (i) N + P, (ii) P only, and (iii) N only; two other 3-yr mixed rotations with N + P (i) F-flax-W (F-Flx-W) and (ii) F-fall rye-W (F-Rye-W); and two continuous wheat rotations (Cont W), one receiving N + P and the other only P. Growing season weather conditions during the 36-yr period were near the long-term mean, but the first 22 yr were generally drier than normal while the last 14 yr (1989–2002) had average to above-average growing conditions. This was partly responsible for grain and N yield being greater in the latter period than in the first 22 yr. The 36-yr average response of wheat grown on fallow to P fertilizer was 339 kg ha-1, while the response to N fertilizer over this period was only 123 kg ha-1. The 36-yr average response of wheat grown on stubble to N was 344 kg ha-1 for F-W-(W) and 393 kg ha-1 for Cont W. Neither flax nor fall rye influenced the yield response of the following wheat crops. Annualized grain production for F-W (N + P), F-W-W (+ N) and F-W-W (+ P) rotations were similar (1130 kg ha-1 yr-1); this was about 15% lower than for F-W-W (N + P), 40% lower than for Cont W (N + P), and 5% lower than for Cont W (+ P). Annualized aboveground N yield for Cont W (N + P) was 57% higher than for Cont W (+ P). Regressions were developed relating straw to grain yields for wheat, flax and fall rye. The amount of NO3-N left in the soil was directly related to amount of N applied and inversely to N removed in the crop. Thus, F-(W)-W (+ N) left about 28% more NO3-N in the rooting zone than F-(W)-W (N + P), while F-W-(W) (N + P) left 20% more than F-W-(W) (+ P), and Cont W (N + P) left 39% more than Cont W (+ P). F-Rye-W (N + P) left much less NO3-N in the soil than any other fallow-containing system and similar amounts to Cont W (N + P). Key words: Yields, grain protein, N and P fertilizer, straw/grain regressions, water use, soil nitrate


2011 ◽  
Vol 10 (12) ◽  
pp. 1932-1940 ◽  
Author(s):  
Wei WANG ◽  
Wei-cai CHEN ◽  
Kai-rong WANG ◽  
Xiao-li XIE ◽  
Chun-mei YIN ◽  
...  

2018 ◽  
Vol 25 (29) ◽  
pp. 29734-29751 ◽  
Author(s):  
Marianna Pastuszak ◽  
Tomasz Kowalkowski ◽  
Jerzy Kopiński ◽  
Andrzej Doroszewski ◽  
Beata Jurga ◽  
...  

2021 ◽  
Author(s):  
Shuai Chen ◽  
Xiaohong Ruan

Abstract Nitrate (NO3-N) load characteristics in consecutive dry years in the Huai River Basin (HRB), China, were examined using streamflow and NO3-N concentration data. The data set spanned 12 years including three consecutive dry years. Baseflow separation, load estimation, and nonparametric linear regression were applied to separate point source (PS), baseflow, and surface runoff NO3-N loads from the total load. The mean annual nonpoint source (NPS) load was 2.84 kg·ha−1·yr−1, accounting for 90.8% of the total load. Baseflow contributed approximately one-fourth of the natural runoff and half of the NPS load. The baseflow nitrate index (i.e., the ratio of baseflow NO3-N load to total NPS NO3-N load) was 25.4% higher in consecutive dry years than in individual dry years. This study demonstrated that baseflow is the preferential hydrological pathway for NO3-N transport in the HRB and that baseflow delivers a higher NO3-N percentage to streams under long-term drought than under short-term drought. This study highlights the alarming evidence that continuous drought caused by climate change may lead to a higher rate of nitrogen loss in agricultural watersheds.


Sign in / Sign up

Export Citation Format

Share Document