The Origin of Corrosion Resistance Change Induced by Sn and Nb Alloying in Zr Alloys

2020 ◽  
Author(s):  
Rong Yuan ◽  
Xie Yao-Ping ◽  
Tong Li ◽  
Chen-Hao Xu ◽  
Mei-Yi Yao ◽  
...  
2002 ◽  
Vol 43 (7) ◽  
pp. 1771-1773 ◽  
Author(s):  
Shujie Pang ◽  
Tao Zhang ◽  
Katsuhiko Asami ◽  
Akihisa Inoue

1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


2020 ◽  
Vol 849 ◽  
pp. 156619
Author(s):  
Jianyue Zhang ◽  
Bin Jiang ◽  
Qingshan Yang ◽  
Dan Huang ◽  
Aitao Tang ◽  
...  

2019 ◽  
Vol 9 (5) ◽  
pp. 405-412
Author(s):  
Bo Zhang ◽  
Huichao Jia ◽  
Quanyong Lian ◽  
Lianyu Jiang ◽  
Guangxin Wu

The effect of extrusion treatment on the mechanical, thermal and corrosion resistance of Mg–La–Zn–Zr alloys were presented. It is suggested that the amount of recrystallized grains played a major role in both mechanical properties and thermal properties. It should be noted the as-cast alloy shows the best thermal conductivity reached the value about 137.507 W/(m · K), however, the mechanical performance of magnesium alloys does not reach the expected results. The thermal properties of extruded alloys have slightly decreased and then increased with the increase of extrusion temperature. Then the tensile properties of Mg–La–Zn–Zr were significantly improved after extrusion treatment. Furthermore, with the increase of extrusion temperature, the elongation-to-fracture increased substantially. After extrusion treatment, the corrosion driving force of the alloy decreases, which reduces the corrosion tendency of the magnesium alloy. The alloy presented in this paper is expected to be applied in industry.


2004 ◽  
Vol 375-377 ◽  
pp. 368-371 ◽  
Author(s):  
Shujie Pang ◽  
Tao Zhang ◽  
Katsuhiko Asami ◽  
Akihisa Inoue

2013 ◽  
Vol 711 ◽  
pp. 110-114
Author(s):  
Seung Jin Lee ◽  
Joon Sik Park ◽  
Jeong Min Kim ◽  
Ki Tae Kim

Typical as-cast microstructure of the MgZnRE-Zr alloys consists primarily of Mg matrix, MgZn and MgRE phases. Although the electrical conductivity was a slightly reduced by Ce-rich RE addition, the conductivity was remained high. Microhardness at room temperature and tensile strength at 200°C were clearly enhanced by the addition. Fluidity as mold filling ability was observed to increase significantly with the RE addition partly due to reduced grain size and solidification range, however the corrosion resistance predicted from polarization curves was little decreased.


2019 ◽  
Vol 85 (12) ◽  
pp. 96-109
Author(s):  
Maryna Ved’ ◽  
Nikolay Sakhnenko ◽  
Tatyana Nenastina ◽  
Iryna Yermolenko ◽  
Valerya Proskurina ◽  
...  

The ternary Co–Mo–W(Zr) coatings with total content of refractory metals of 30–40 wt.%, and Co–W–Zr alloys (12–26 wt.%) are deposited from pyrophosphate-citrate electrolytes in pulse regime. The composition of the coatings as well as the surface morphology depends on the current density. The X-ray diffraction patterns reflect the amorphous-and-crystalline ternary alloys structure. Phases of α-Co, Co–Mo intermetallic compounds, and traces of metallic molybdenum were detected in the Co–Mo–Zr coatings. Phase composition of Co–Mo–W deposits differs by emergence of Co7W6 phase and traces of metallic tungsten, and there is no metallic W in Co–W–Zr electrolytic alloys. The corrosion behavior of ternary coatings in alkaline medium studied by EIS shows that Co–Mo–Zr alloys are characterized by highest corrosion resistance among deposited coatings due to presence of metallic molybdenum and stoichiometric ZrO2 with both high electrical resistivity and chemical stability. The coatings  Co–Mo–W and Co–Mo–Zr containing phases of Mo or W are characterized by higher corrosion resistance as compared with that without metallic molybdenum and tungsten. The cyclic voltammetry data confirm stability of ternary coatings in alkaline solution under anodic polarization. Such properties as well as the developed globular surface make materials promising for use as anodes in fuel cells in particular based on alkali electrolytes.


2020 ◽  
Vol 14 (4) ◽  
pp. 413-425
Author(s):  
Lei Chang ◽  
Xiangrui Li ◽  
Xuhui Tang ◽  
He Zhang ◽  
Ding He ◽  
...  

2019 ◽  
Vol 50 (11) ◽  
pp. 1391-1398 ◽  
Author(s):  
Q.‐g. Jia ◽  
S. Han ◽  
Y. Sun ◽  
W. Zhang ◽  
C. Xu ◽  
...  

2014 ◽  
Vol 29 (3) ◽  
pp. 179-187 ◽  
Author(s):  
X. B. Zhang ◽  
X. C. He ◽  
Y. J. Xue ◽  
Z. Z. Wang ◽  
Q. Wang

Sign in / Sign up

Export Citation Format

Share Document