scholarly journals Unified efficient layerwise theory for smart beams with segmented extension/shear mode, piezoelectric actuators and sensors

2007 ◽  
Vol 2 (7) ◽  
pp. 1267-1298 ◽  
Author(s):  
Santosh Kapuria ◽  
Peter Hagedorn
Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


2004 ◽  
Vol 10 (8) ◽  
pp. 1199-1220 ◽  
Author(s):  
Akhilesh K. Jha ◽  
Daniel J. Inman

Gossamer structures have been a subject of renewed interest for space applications because of their low weights, on-orbit deploying capabilities, and minimal stowage volumes. In this study, vibration suppression of an inflated structure using piezoelectric actuators and sensors has been attempted. These actuators and sensors can be suitably used for gossamer structures since they can conform to curved surfaces and provide distributed actuation and sensing capabilities. Using the natural frequencies and mode shapes of the system (structure, actuators, and sensors), a state-space model is derived. For designing a robust vibration controller, we used a sliding mode technique. The derivations of the sliding model controller and observer are presented in details. Finally, by means of numerical analysis, the method was demonstrated for an inflated torus considering Macro-Fiber Composite (MFC™) as actuators and Polyvinylidene Fluoride (PVDF) as sensors. The simulation studies show that the piezoelectric actuators and sensors are suitable for vibration suppression of an inflatable torus. The robustness properties of the controller and observer against the parameter uncertainty and disturbances are also studied.


Sign in / Sign up

Export Citation Format

Share Document