Assessment of Groundwater Geochemistry of Vel River basin, Western Maharashtra, India

2020 ◽  
Vol 4 (1) ◽  
pp. 14-28
Author(s):  
S. K. Gaikwad ◽  
N. D. Pathan ◽  
N. S. Bansode ◽  
S. P. Gaikwad ◽  
Y. P. Badhe ◽  
...  

To study the chemistry of major ion in groundwater from Vel (Velu) River basin, sixty (60) samples of dug wells and bore wells were collected and analyzed using standard techniques given by APHA. It shows order of dominance for cations, Na+ > Ca2+ > Mg2+ > K+ and in anionic concentration as HCO3- > Cl- > SO42- in groundwater. The pH of groundwater is slightly alkaline (range: pH 7.0 - 8.1), while average values of Electrical Conductivity (EC) is about 2641 µS/cm indicating high mineralization of groundwater. In general, the cationic concentration (Na+, K+, Ca2+ and Mg2+) of the groundwater increase in the downstream side (from Northwest to South east), suggesting geological control on the composition of groundwater while highest concentration is in lower part of the basin are generally associated with the high salinity. In the major anions, bicarbonate (HCO3-) is higher due to rock-water interaction. Average value of chloride is about of 235 mg/L due to discharge zones along with anthropogenic activities. The geochemical data plotted on Piper Trilinear Diagram is showing dominant hydro-chemical facies: Ca2++Mg2+, Na++ K+, Cl-+ SO42- -HCO3- found in 83.3 % samples indicating the alkaline earth exceeding the alkalis and the strong acids exceeds the weak acids. The pH, Total Hardness (TH) and Magnesium (Mg2+) of the samples show more proportion of samples falling above desirable limit. Otherwise the quality of groundwater is good for drinking. The irrigation indices like SAR, KR and SSP were considered to evaluate groundwater suitability for irrigation. Comparing with SAR parameter all samples are excellent to good for irrigation. In SSP, 33.3 % samples are within permissible, while 66.6% samples are doubtful for irrigation purpose. In KR almost all samples (excluding 04 samples in lower side of basin) are suitable for irrigation. So, variations in climate, geology with anthropogenic activities are modifying the groundwater geochemistry of Vel River Basin.

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 673 ◽  
Author(s):  
Claudia Patricia Quevedo ◽  
Juan Jiménez-Millán ◽  
Gabriel Ricardo Cifuentes ◽  
Rosario Jiménez-Espinosa

Electron microscopy and sediment geochemical data from a river basin (the upper Chicamocha river basin, UCRB, Boyacá province, Colombia) affected by anthropogenic activities (wastewater discharges, smelting and agricultural activities) showed the existence of heterogeneously distributed Zn particles in the sediments and sediments with Zn contents above the regional background (42 mg/kg). The objective of this study was to evidence the ZnS sedimentary neoformation in organic matter rich sediments deposited in anthropogenic reservoirs to reveal the processes involved in the sedimentary uptake of Zn from potential pollution sources. The highest Zn concentrations are found in clay minerals and organic matter-rich sediments (up to 427 mg/kg) deposited in slow-flowing reaches of the river associated to La Playa dam. Quartz-rich sediments poor in organic matter deposited in fast flowing segments of the river show very low Zn contents (1–12 mg/kg). Electron microscopy images showed ZnS nanoparticles forming cell-shaped aggregates suggesting that sulfate-reducing microorganisms acted as templates for the partial binding of Zn and for the nucleation and growth of zinc sulfide minerals. A good correlation of Zn with total organic carbon (r = 0.936) and the low potential redox of these sediments (−233 mV) suggest that organic matter was able to maintain oxygen depleted conditions appropriate to the Zn accumulation in the sediments. Our results demonstrate that potentially toxic Zn, originating from anthropic activities, was partially immobilized in organic matter-rich sediments through the precipitation of sulfides.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Badusha M. ◽  
Santhosh S

The hydro geochemical features of Neyyar River for a period of one year from May 2015 to April 2016 were analyzed. Six sampling sites were fixed considering physiography and present landuse pattern of the river basin. The residents in the drainage basin are primarily responsible for framing a better landuse and thereby maintain a good water and sediment regime. Geospatial pattern of the present landuse of the study area indicated that the sustainability of this river ecosystem is in danger due to unscientific landuse practices, which is reflected in the river quality as well. The parameters such as hydrogen ion concentration, electrical conductivity, chloride, Biological Oxygen Demand, total hardness and sulphate of river water and Organic Carbon of river bed sediments were analyzed in this study. The overall analysis shows that the highland areas are characterized by better quality of water together with low organic carbon, which is mainly due to better landuse and minimal reclamation. The midland and lowland areas are characterized by poor quality of water with high organic carbon, which is due to high anthropogenic activities and maximum pollutants associated with the region together with the alteration in landuse from a traditional eco-friendly pattern to a severely polluted current pattern.


1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


Earth ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 32-50
Author(s):  
Rocky Talchabhadel ◽  
Jeeban Panthi ◽  
Sanjib Sharma ◽  
Ganesh R. Ghimire ◽  
Rupesh Baniya ◽  
...  

Streamflow and sediment flux variations in a mountain river basin directly affect the downstream biodiversity and ecological processes. Precipitation is expected to be one of the main drivers of these variations in the Himalayas. However, such relations have not been explored for the mountain river basin, Nepal. This paper explores the variation in streamflow and sediment flux from 2006 to 2019 in central Nepal’s Kali Gandaki River basin and correlates them to precipitation indices computed from 77 stations across the basin. Nine precipitation indices and four other ratio-based indices are used for comparison. Percentage contributions of maximum 1-day, consecutive 3-day, 5-day and 7-day precipitation to the annual precipitation provide information on the severity of precipitation extremeness. We found that maximum suspended sediment concentration had a significant positive correlation with the maximum consecutive 3-day precipitation. In contrast, average suspended sediment concentration had significant positive correlations with all ratio-based precipitation indices. The existing sediment erosion trend, driven by the amount, intensity, and frequency of extreme precipitation, demands urgency in sediment source management on the Nepal Himalaya’s mountain slopes. The increment in extreme sediment transports partially resulted from anthropogenic interventions, especially landslides triggered by poorly-constructed roads, and the changing nature of extreme precipitation driven by climate variability.


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
C. Prakasam ◽  
R. Saravanan ◽  
M. K. Sharma ◽  
Varinder S. Kanwar

AbstractAs the surface water in northern India is the main water resource for regional economic and also supply for drinking and irrigation purposes. However, deficiency of water quality leads to serious water pollution in the Pandoh river basin (PRB). Therefore, the main objective of the present study is to evaluate the quality of surface water. With this objective, surface water samples were collected from the PRB of northern India, and analyzed for pH, EC, turbidity, alkalinity, total dissolved solids, and total hardness. Moreover, geographical information system (GIS) tools were used to prepare the geology, drainage pattern, and location maps of the study region. Surface water quality observed from the PRB has an alkaline nature with a moderately hard type. Further studies are encouraged to better understand the water quality in northern India.


Author(s):  
N. Ozerova

Based on the data from economic notes to the General Land Survey, the ranges of commercial fish and crayfish species that inhabited waterbodies of the Moscow River basin in the second half of the 18th century are reconstructed. Eighteen maps showing the distribution of 22 fish species, including Acipenser ruthenus L., Abramis brama L., Barbatula barbatula L., Lota lota L., Sander lucioperca L. and others are compiled. Comparison of commercial fish species that lived in the Moscow River basin in the second half of the 18th century with data from ichthyological studies in the beginning of the XXI century and materials of archaeological surveys shows that almost all of these species have lived in the Moscow River basin since ancient times and have survived to the present day.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1321 ◽  
Author(s):  
Muhammad Aleem ◽  
Cao Shun ◽  
Chao Li ◽  
Arslan Aslam ◽  
Wu Yang ◽  
...  

The industrial augmentation and unguided anthropogenic activities contaminate water sources in most parts of the world especially in developing countries like Pakistan. High concentration of pollutants in groundwater affects human, soil, and crop health badly. The present study was conducted to investigate groundwater quality for drinking and irrigation purposes in an industrial zone of Pakistan. A GIS tool was used to investigate the spatial distribution of different physico-chemical parameters. In this study, the average results exceeding World Health Organization (WHO) and National Environmental Quality Standards (NEQS) were found for pH 7.84, total dissolved solids (TDS) 1492 mg/L, phosphate 0.51 mg/L, dissolved oxygen (DO) 9.92% saturation, F-coli 6.48 colonies/100 mL, Na+ 366 mg/L, HCO3− 771 mg/L, sulfate 251 mg/L, chlorides 427 mg/L, total hardness (as CaCO3) 292 mg/L, electrical conductivity (EC) 2408 μS/cm, iron (Fe) 0.48 mg/L, chrome (Cr) 0.50 mg/L, arsenic (As) 0.04 mg/L, total phosphorus (TP) 0.17 mg/L, sodium adsorption ratio (SAR) 9.76 (in meq/L), residual sodium carbonate (RSC) 9.28 meq/L, % ion balance 14.4 (in meq/L), percentage sodium ion (% Na+) concentration 58.9 meq/L, and water quality index (WQI) 69.0. The trend of cations and anions were (in meq/L) Na > Mg > Ca > K and HCO3 > Cl > CO3 > SO4 respectively. Although the results of the present study showed poor conditions of the groundwater for drinking as WQI but and irrigation purposes as SAR, it needs to improve some more conditions for the provision of safe drinking water and irrigation water quality.


2013 ◽  
Vol 14 (2) ◽  
pp. 299-303
Author(s):  
M. Madhukar ◽  
S. P. Manjunath ◽  
Rohini V. Gopal

Ground water has emerged as the primary water deficiency reduction tool in most developing countries. Recently, the quality of ground water has deteriorated due to over-exploitation and contamination resulting from anthropogenic activities. A broad range of physical, inorganic and organic, bacteriological, and radioactive parameters are found in ground waters. The presence of nitrate and hardness-causing ions at elevated levels is of greatest concern currently, as they can have a serious impact on human health and water distribution systems. The conventional methods which are applied to reduce the concentration of these inorganic constituents are found to be inconsistent when the concentration is significantly high. The present study is an attempt to remove nitrate and hardness-causing ions using polystyrene (PS) beads as packed media. The ground water sample had a total hardness between 1,030–1,250 mg/L, which is greater than the permissible limit, and the nitrate concentration was less than 45 mg/L. PS beads packed media was found to respond significantly in reducing nitrate by 88% and total hardness by 38% at an optimum flow rate and particle size of 3 L/min and 4 mm diameter respectively. PS beads can be a promising media in reducing nitrate and total hardness.


Author(s):  
C. E. Soteros ◽  
D. W. Sumners ◽  
S. G. Whittington

AbstractIn this paper we are concerned with questions about the knottedness of a closed curve of given length embedded in Z3. What is the probability that such a randomly chosen embedding is knotted? What is the probability that the embedding contains a particular knot? What is the expected complexity of the knot? To what extent can these questions also be answered for a graph of a given homeomorphism type?We use a pattern theorem due to Kesten 12 to prove that almost all embeddings in Z3 of a sufficiently long closed curve contain any given knot. We introduce the idea of a good measure of knot complexity. This is a function F which maps the set of equivalence classes of embeddings into 0, ). The F measure of the unknot is zero, and, generally speaking, the more complex the prime knot decomposition of a given knot type, the greater its F measure. We prove that the average value of F diverges to infinity as the length (n) of the embedding goes to infinity, at least linearly in n. One example of a good measure of knot complexity is crossing number.Finally we consider similar questions for embeddings of graphs. We show that for a fixed homeomorphism type, as the number of edges n goes to infinity, almost all embeddings are knotted if the homeomorphism type does not contain a cut edge. We prove a weaker result in the case that the homeomorphism type contains at least one cut edge and at least one cycle.


2014 ◽  
Vol 18 (11) ◽  
pp. 4579-4600 ◽  
Author(s):  
P. Da Ronco ◽  
C. De Michele

Abstract. Snow cover maps provide information of great practical interest for hydrologic purposes: when combined with point values of snow water equivalent (SWE), they enable estimation of the regional snow resource. In this context, Earth observation satellites are an interesting tool for evaluating large scale snow distribution and extension. MODIS (MODerate resolution Imaging Spectroradiometer on board Terra and Aqua satellites) daily Snow Covered Area product has been widely tested and proved to be appropriate for hydrologic applications. However, within a daily map the presence of cloud cover can hide the ground, thus obstructing snow detection. Here, we consider MODIS binary products for daily snow mapping over the Po River basin. Ten years (2003–2012) of MOD10A1 and MYD10A1 snow maps have been analysed and processed with the support of a 500 m resolution Digital Elevation Model (DEM). We first investigate the issue of cloud obstruction, highlighting its dependence on altitude and season. Snow maps seem to suffer the influence of overcast conditions mainly in mountain and during the melting period. Thus, cloud cover highly influences those areas where snow detection is regarded with more interest. In spring, the average percentages of area lying beneath clouds are in the order of 70%, for altitudes over 1000 m a.s.l. Then, starting from previous studies, we propose a cloud removal procedure and we apply it to a wide area, characterized by high geomorphological heterogeneity such as the Po River basin. In conceiving the new procedure, our first target was to preserve the daily temporal resolution of the product. Regional snow and land lines were estimated for detecting snow cover dependence on elevation. In cases when there was not enough information on the same day within the cloud-free areas, we used temporal filters with the aim of reproducing the micro-cycles which characterize the transition altitudes, where snow does not stand continually over the entire winter. In the validation stage, the proposed procedure was compared against others, showing improvements in the performance for our case study. The accuracy is assessed by applying the procedure to clear-sky maps masked with additional cloud cover. The average value is higher than 95% considering 40 days chosen over all seasons. The procedure also has advantages in terms of input data and computational effort requirements.


Sign in / Sign up

Export Citation Format

Share Document