Hydrospatial Analysis
Latest Publications


TOTAL DOCUMENTS

18
(FIVE YEARS 18)

H-INDEX

1
(FIVE YEARS 1)

Published By Gatha Cognition

2582-2969

2021 ◽  
Vol 5 (2) ◽  
pp. 85-100
Author(s):  
Arun Magar

An attempt made to reconstruct the monsoon variability using sedimentological, geochemical and mineral magnetic studies from deposits in Vaghad Tank, Nashik district, Maharashtra (India). The ~140 years multi-proxy data of the 3.3 meter thick sedimentary section of the tank exhibits some minor changes in sediment characteristics up to the depth of ~150 cm. The grain-size analysis and mineral magnetic studies of 67 samples of sediment suggests that, the sediment dominated by clay. Overall, sedimentary profile does not exhibit any systematic trend in the sediment properties. Finally, the present study concludes no significant changes in the past monsoon conditions have been occurred during the last century but some minor changes in the hydrodynamic conditions have been noticed during the last few decades.


2021 ◽  
Vol 5 (2) ◽  
pp. 72-84
Author(s):  
Khan Tahama ◽  
Gautam Gupta ◽  
J. D. Patil

Geoelectrical data was acquired using Wenner array over 23 sites with constant electrode separation of 70 m over Chikotra Basin, Dist. Kolhapur, Maharashtra (India). The spatial variation maps of resistivity at depths from 2 to 70 m were plotted using Inverse Distance Weighted (IDW) technique for interpolation in ArcGIS 10.5 to obtain a comprehensive subsurface hydrogeological representation of the study area. High resistivity (>140 Ωm) up to 20m depth, indicative of massive basalts is deciphered towards the NE part of the study area, while the NW sector reveal low resistive (up to 40 Ωm) feature at shallow depths due to fractured basalts, thus conducive for groundwater exploration. Alluvium deposits and columnar jointed basalts in the central part depicts as EW trending conductive (< 30 Ωm) feature suggesting prospective groundwater zone. Low resistivity (6-50 Ωm) from shallow to deeper depths (up to 70m), in the southern region can be identified as potential aquifer system. Longitudinal geoelectric cross-sections are generated over four profiles to identify the lateral and vertical variation in geology and groundwater potential zones. The western and central part of the northern profile (A-A') is highly resistive with resistivity of the order of 80-140 Ωm constituting compact basalts and thus devoid of water. Low resistive zone (30 Ωm) in the eastern part suggests groundwater at shallow depths. Low resistivity zones ranging from 10-50 Ωm is observed at different depth levels over the central profile (B-B') which can be tapped for groundwater exploitation. Several sites over profiles C-C' and the southern-most D-D' suggest promising aquifer zones. Because defining prospective groundwater zones in hard rock terrain is difficult, it’s crucial to look into a river basin’s hydrogeological arrangement early on in the planning process.


2021 ◽  
Vol 5 (2) ◽  
pp. 56-71
Author(s):  
Anu David Raj ◽  
K. R. Sooryamol ◽  
Aju David Raj

Kerala is the gateway of the Indian southwest monsoon. The Tropical Rainfall Measurement Mission (TRMM) rainfall data is an efficient approach to rainfall measurement. This study explores the temporal variability in rainfall and trends over Kerala from 1998-2019 using TRMM data and observatory data procured from India Meteorological Department (IMD). Direct comparison with observatory data at various time scales proved the reliability of the TRMM data (monthly, seasonal and annual). The temporal rainfall converted by averaging the data on an annual, monthly and seasonal time scale, and the results have confirmed that the rainfall estimated based on satellite data is dependable. The station wise comparison of rainfall in monsoon season provides satisfactory results. However, estimation of rainfall in mountainous areas is challenging task using the TRMM. In the basins of humid tropical regions, TRMM data can be a valuable source of rainfall data for water resource management and monitoring with some vigilance. In Kerala, the study found an insignificant increase in the southwest monsoon and winter season rainfall during last two decades. The rainfall over Kerala showed uncertainty in the distribution of monthly, seasonal and yearly time scales. This study provides a preview of recent weather patterns that would enable us to make better decisions and improve public policy against climate change.


2021 ◽  
Vol 5 (2) ◽  
pp. 45-55
Author(s):  
Elhoucein Layati ◽  
Abdellah Ouigmane ◽  
Abdelghani Qadem ◽  
Mohamed El Ghachi

The present study is focused on analysis of rainfall in the Oued El-Abid watershed, which is characterized by an important potential in water supply of the Bin El Ouidane dam and the recharging groundwater of the plains downstream. The aim of the present research is to characterize the meteorological drought in the Oued El-Abid watershed, located in the Beni Mellal-Khenifra region (Central High Atlas, Morocco). The study focused on the analysis of the meteorological drought detection indices such as the deviation from the mean (DM), the rainfall index (RI) and the standardized precipitation index (SPI) based on annual precipitation for the three stations (Tilouguit, Ait Ouchen and Tizi N'Isli) generally experienced alternating periods of surplus and deficit. The results of these indices allowed us to determine the most remarkable and common drought years are: 1981, 1983, 1990, 1998, 2001, 2005, 2017 and 2019. This study is helpful for water resource managers to make decisions and develop tools for adaptation and mitigation of climate change impacts.


2021 ◽  
Vol 5 (1) ◽  
pp. 34-44
Author(s):  
B. Pradeep Kumar ◽  
K. Raghu Babu ◽  
M. Rajasekhar ◽  
M. Ramachandra

Freshwater scarcity is a major issue in Rayalaseema region in Andhra Pradesh (India). Groundwater is the primary source of drinking and irrigation water in Anantapur district, Andhra Pradesh, India. Therefore, it is important to identify areas having groundwater potential; however, the current methods of groundwater exploration consume a lot of time and money. Analytic Hierarchy Process (AHP)-based spatial model is used to identify groundwater potential zones in Anantapur using remote sensing and GIS-based decision support system. Thematic layers considered in this study were geology, geomorphology, soils, land use land cover (LULC), lineament density (LD), drainage density (DD), slope, and rainfall. According to Saaty’s AHP, all these themes and individual features were weighted according to their relative importance in groundwater occurrence. Thematic layers were finally combined using ArcGIS to prepare a groundwater potential zone map. The high weighted value area was considered a groundwater prospecting region. Accordingly, the GWPZ map was classified into four categories: very good, good, moderate, and poor. The very good GWPZ area is 77.37 km2 (24.93%) of the total study area. The northeastern and southeastern sections of the study area, as well as some medium patches in the center and western regions, are covered by moderate GWPZs, which cover an area of 53.07 km2 (17.10%). However, the GWP in the study area’s central, southwestern, and northern portions is poor, encompassing an area of approximately 79.31 km2 (25.56%). Finally, RS and GIS techniques are highly effective and useful for identifying GWPZs.


2021 ◽  
Vol 5 (1) ◽  
pp. 24-33
Author(s):  
Muthukumarasamy Ranganathan ◽  
Bagyaraj M. ◽  
Mukesh M. ◽  
Zubairul Islam ◽  
Daniel Tekley Gebremedhin ◽  
...  

Groundwater is the most valuable treasury commodity in the world, yet it is depleted on a daily basis. Hand arrangement is crucial in assembly for delineating a potential groundwater zones. Geographic Information System (GIS) and Remote Sensing (RS) data with Analytical Hierarchy Process (AHP) approach have proven critical for micro level analysis of groundwater potentials. This exploration was authorized in order to locate a prospective groundwater area in the Virutachalam Taluk of Southern India. The Inverse Distance Weightage (IDW) technique was used to determine the groundwater potential precinct by thematic layers of drainage, drainage density, geology, lineament, lineament density, geomorphology, soil, and slopes. Overall, the prospective groundwater zone in the study area was classified as excellent (20.66 %), good (60.29 %), moderate (16.38 %) and poor (2.73 %). This optional analysis offers an excellent possible groundwater zone for patches in the northern and central sections of Kotteri and Kammapuram in Virudhachalam Taluk. The survey revealed that the approach of inverse distance weighting provides an operating mechanism for suggesting groundwater potential zones for clear expansion and groundwater control in not the same hydro-geological settings.


2021 ◽  
Vol 5 (1) ◽  
pp. 12-23
Author(s):  
Fawzi Moftah ◽  
MacTar Mohamed ◽  
Alzubair Abousaif

The present study has been carried out to analyze the relationship between faulting and geomorphology of the Wadi Atyaruh to reveal the effect of structures on the morphology and distribution of the different karst features. Geographical Information System (GIS) and Remote Sensing (RS) techniques were applied to investigate morphological and topographic characteristics of Wadi Atyaruh, based on ASTER Global Digital Elevation Model (ASTER GDEM) Version 3 (V3) data. Dextral strike-slip fault is the main faulting type in the valley. Conjugate faults system has been found in the study area, which reveals the orientations of the principal stresses. Wadi Atyaruh consists mainly of Dernah formations (Eocene) and Quaternary deposits. Two types of Karren have been recognized, they are Rillen karren and solution basis which are well distributed in Darnah formation. Caves are found in the Darnah formation, the passages and chambers of these caves show a phreatic bedding plane, elliptical shape, laminar profiles, and rectangular and rounded top vadose profiles. The drainage system of this valley is sub-parallel drainage pattern to dendritic drainage pattern, indicating that the area has affected by strike-slip movement (Dextral), joints and it has steep slopes. interpretation of DEM of study area indicate moderate and high relief, low run off and high infiltrations due to the nature of the fracture carbonate rock, the basin have early mature stage of erosion development. Geomorphic parameters such as hill shade, slop, aspect, area shaded and elevation maps, was produced to describe geomorphic forms and processes of the Wadi Atyaruh. The complete morphometric analysis of drainage basin indicates that the given area is having good groundwater prospect.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Vitthal Anwat ◽  
Pramodkumar Hire ◽  
Uttam Pawar ◽  
Rajendra Gunjal

Flood Frequency Analysis (FFA) method was introduced by Fuller in 1914 to understand the magnitude and frequency of floods. The present study is carried out using the two most widely accepted probability distributions for FFA in the world namely, Gumbel Extreme Value type I (GEVI) and Log Pearson type III (LP-III). The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) methods were used to select the most suitable probability distribution at sites in the Damanganga Basin. Moreover, discharges were estimated for various return periods using GEVI and LP-III. The recurrence interval of the largest peak flood on record (Qmax) is 107 years (at Nanipalsan) and 146 years (at Ozarkhed) as per LP-III. Flood Frequency Curves (FFC) specifies that LP-III is the best-fitted probability distribution for FFA of the Damanganga Basin. Therefore, estimated discharges and return periods by LP-III probability distribution are more reliable and can be used for designing hydraulic structures.


2020 ◽  
Vol 4 (1) ◽  
pp. 29-39
Author(s):  
Abubakar Tukur ◽  
Maharazu Yusuf ◽  
Adnan Abdulhamid ◽  
Da’u Umar ◽  
Hamza Isiyaka ◽  
...  

This paper proposed a model explaining variation of shallow groundwater yield and dynamic level with respect to river location in the floodplain of Hadejia, along Hadejia River Basin of Jigawa State, Northwestern Nigeria. To achieve the aim, six transects were established within one km2 of floodplain and were oriented perpendicular to the river channel. Three tube wells were sampled and positioned along each transect at regular intervals making a total of 18 wells. Pumping test, which was repeated four times at 15 minutes interval in both morning and evening hours was used to measure groundwater yield. Multivariate statistical tools such as analysis of variance, Pearson product moment correlation, and cluster analysis were used, respectively, to test the research hypothesis and to classify sampling points into similar groups based on groundwater yield. Results show that the average yield of wells for evening hours recorded a higher yield of 3.3 L/s (55.93%) than the yield in the morning hours of 2.6 L/s (44.07%). Further, the 2-way ANOVA at 5% level of significance showed no significant difference in the groundwater yield related to relative location of wells in morning (p value, 0.30>0.05) and evening (p value, 0.21>0.05) hours. The results of ANOVA revealed no statistically significant difference between the points. It suggests that the adopted model can be applied in other similar sedimentary basins with a view to validating it. A decision support system is recommended among the strategies to improve groundwater resources management in the area.


2020 ◽  
Vol 4 (1) ◽  
pp. 14-28
Author(s):  
S. K. Gaikwad ◽  
N. D. Pathan ◽  
N. S. Bansode ◽  
S. P. Gaikwad ◽  
Y. P. Badhe ◽  
...  

To study the chemistry of major ion in groundwater from Vel (Velu) River basin, sixty (60) samples of dug wells and bore wells were collected and analyzed using standard techniques given by APHA. It shows order of dominance for cations, Na+ > Ca2+ > Mg2+ > K+ and in anionic concentration as HCO3- > Cl- > SO42- in groundwater. The pH of groundwater is slightly alkaline (range: pH 7.0 - 8.1), while average values of Electrical Conductivity (EC) is about 2641 µS/cm indicating high mineralization of groundwater. In general, the cationic concentration (Na+, K+, Ca2+ and Mg2+) of the groundwater increase in the downstream side (from Northwest to South east), suggesting geological control on the composition of groundwater while highest concentration is in lower part of the basin are generally associated with the high salinity. In the major anions, bicarbonate (HCO3-) is higher due to rock-water interaction. Average value of chloride is about of 235 mg/L due to discharge zones along with anthropogenic activities. The geochemical data plotted on Piper Trilinear Diagram is showing dominant hydro-chemical facies: Ca2++Mg2+, Na++ K+, Cl-+ SO42- -HCO3- found in 83.3 % samples indicating the alkaline earth exceeding the alkalis and the strong acids exceeds the weak acids. The pH, Total Hardness (TH) and Magnesium (Mg2+) of the samples show more proportion of samples falling above desirable limit. Otherwise the quality of groundwater is good for drinking. The irrigation indices like SAR, KR and SSP were considered to evaluate groundwater suitability for irrigation. Comparing with SAR parameter all samples are excellent to good for irrigation. In SSP, 33.3 % samples are within permissible, while 66.6% samples are doubtful for irrigation purpose. In KR almost all samples (excluding 04 samples in lower side of basin) are suitable for irrigation. So, variations in climate, geology with anthropogenic activities are modifying the groundwater geochemistry of Vel River Basin.


Sign in / Sign up

Export Citation Format

Share Document