scholarly journals Treatment of industrial electroplating wastewater for metals removal via electrocoagulation continous flow reactors

Author(s):  
Hussein I. Abdel-Shafy ◽  
Rehan M. M. Morsy ◽  
Mahmoud A. I. Hewehy ◽  
Taha M. A. Razek ◽  
Maamoun M. A. Hamid

Abstract A real industrial electroplating rinsing wastewater was collected and subjected the physical and chemical examination. The study showed that it can be categorized as high strength wastewater, at pH- 2, COD 1430 mg/l, and high level of metals above permissible limits namely: 150, 30, 25, and 2.9 for Ni, Cu, Zn, and Fe mg/l respectively. Therefore, metals must be adequately removed before discharging to avoid any hazardous impact on the environment. Similar synthetic wastewater was prepared to study effect of chemical coagulation for the precipitation of metals. The optimum removal rate was achieved by using a combination of lime and ferric chloride at 100 and 30 mg/l respectively. The chemically treated electroplating wastewater was subjected to an electrocoagulation study. A comparison between iron and stainless-steel electrodes for the removal of metals was investigated. Furthermore, the effect of different electric voltage, and the contact time on metals removal efficiency were also examined. It was found that the optimum removal capacity was achieved when stainless steel electrode was employed in the presence of ferric chloride as coagulant, at 10 volts, 30 min. contact time, and pH 9 for synthetic solution. In a batch treatment system, the real industrial wastewater was treated at the predetermined optimum operating conditions; the removal of metals was 92.1%, 87.8% and 82.9% for Ni. Zn, and Cu respectively. By employing a continuous flow reactor for the treatment of the same real wastewater and under the same operating conditions; metals removal rate increased to 98.9%, 97.4% and 96.6% for Ni. Zn, and Cu respectively. The level of metals in the final treated wastewater copes with Egyptian Environmental Regulation. The overall results confirmed that the electro-coagulation (EC) technology offers an effective alternative process in combination with the conventional chemical coagulation process for reaching high removal performance of toxic metals from the electroplating wastewater. The advantage of EC technique is achieving high treatment efficiency instead of expensive chemical reagents, high construction cost and/or other conventional processes. In addition, the final treated water can be reused for rinsing process in electroplating industry and/or discharging without any environmental hazard effect. It is also recommended to employ solar energy instead of electricity to reduce cost of operation.

2012 ◽  
Vol 599 ◽  
pp. 387-390
Author(s):  
Xing Yu Bian ◽  
Xing Sheng Kang ◽  
Yi Li ◽  
Yu Lin Sun ◽  
Min Kong ◽  
...  

In this paper, chemical and biological flocculation and suspended medium process was applied to treat low concentration municipal wastewater in a pilot scale test in order to find the optimum operational parameter. The results showed that: system on pollutant removal mainly on chemical and biological flocculation reaction pool, Under the optimal operating condition, CODCr, TP and SS removal efficiencies reached 75.5%, 76%and 90.5% respectively, and the CODCr, TP, SS concentrations of effluent meet the National Wastewater Integrated Discharge Standard. The optimum operating conditions according to the local actual situation, running for more than half a year, for the optimization of control parameters for the contrast obtained.


2021 ◽  

<p>Conversion of ammonia to nitrate is sensitive to a number of inhibitors. There is limited information on the nitrification inhibition coefficient and kinetic model in the current literature. Octyl Phenol Ethoxylate (OPE) and Bisphenol A (BPA) inhibition constants were found in nitrogen removal using an activated sludge system. Firstly, OPE and BPA free wastewater was used to determine the optimum operating conditions. The effect of OPE and BPA concentration on system performance was investigated. The ammonium removal rate was less affected by lower OPE and BPA concentrations. When the BPA and OPE concentrations were increased from 0 mg/L to 30 mg/L, the outlet ammonium nitrogen concentrations were increased respectively from 2.8 mg/L to 49.8 mg/L and from 2.6 mg/L to 20.40 mg/L. Due to the inhibition created by these compounds on Nitrobacter, nitrite nitrogen increased in the medium. As the OPE and BPA concentrations increased, the conversion rate of the ammonium nitrogen into nitrate decreased. Based on the experimental results, a kinetic model was developed, and the OPE and BPA inhibition constants (KOPE and KBPA) were found to be 40.7 mg/L and 11.76 mg/L, respectively. In nitrogen removal, BPA created a higher inhibition effect in comparison to OPE.</p>


2018 ◽  
Vol 20 (2) ◽  
pp. 216-225

The aim of this study is to investigate the performance of the solar photocatalyst of TiO2/ZnO/Fenton process to treat the refinery wastewater and remove inorganic carbon (IC) which potentially toxic to human, aquatic and microorganism life. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, Fe2+ dosage, H2O2 dosage, and pH to identify the optimum operating conditions. Quadratic models for inorganic carbon (IC) removal and residual iron prove to be significant with low probabilities (<0.0001). The (IC) removal rates and residual iron correspond well with the predicted models. The maximum removal rate for IC and residual iron was 92.3% and 0.013, respectively at optimum operational conditions of a TiO2 dosage (0.3 g/l), ZnO dosage (0.58 g/l), Fe2+ dosage (0.02 g/l), H2O2 dosage (2.7 g/l), and pH (7). The treatment process achieved higher degradation efficiencies for IC and reduced the treatment time comparing with other related processes.


2010 ◽  
Vol 62 (6) ◽  
pp. 1304-1311 ◽  
Author(s):  
Huaili Zheng ◽  
Huiqin Zhang ◽  
Xiaonan Sun ◽  
Peng Zhang ◽  
Tiroyaone Tshukudu ◽  
...  

Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2 +  concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of −dC/dt = 0.0337 [malachite green]0.9860[Fe2 + ]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.


2006 ◽  
Vol 3 (4) ◽  
pp. 369-374 ◽  
Author(s):  
Sanjay Patel ◽  
K. K. Pant

The production of hydrogen was investigated in a fixed bed tubular reactor via steam reforming of methanol (SRM) using CuO∕ZnO∕Al2O3 catalysts prepared by wet impregnation method and characterized by measuring surface area, pore volume, x-ray diffraction patterns, and scanning electron microscopy photographs. The SRM was carried out at atmospheric pressure, temperature 493-573K, steam to methanol molar ratio 1–1.8 and contact-time (W/F) 3–15kg cat./(mol/s of methanol). Effects of reaction temperature, contact-time, steam to methanol molar ratio and zinc content of the catalyst on methanol conversion, selectivity, and product yields was evaluated. The addition of zinc enhanced the methanol conversion and hydrogen production. The excess steam promoted the methanol conversion and suppressed the carbon monoxide formation. Different strategies have been mentioned to minimize the carbon monoxide formation for the steam reforming of methanol to produce polymer electrolyte membrane (PEM) fuel cell grade hydrogen. Optimum operating conditions with appropriate composition of catalyst has been investigated to produce more selective hydrogen with minimum carbon monoxide. The experimental results were fitted well with the kinetic model available in literature.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1851
Author(s):  
Ahmed M. Mahdy ◽  
Mohamed Z. M. Salem ◽  
Asmaa M. Ali ◽  
Hayssam M. Ali

A batch bio-sorption experiment was conducted on Eucalyptus camaldulensis Dehnh. wood-branch in the form of woody sawdust nanoparticles (nSD-KF) to evaluate their potential efficiency as phosphate bio-sorption capacity. The operating parameters of phosphate bio-sorption including contact time, initial concentration, pH, temperature, dosage, size, competing ion, and the possible mechanisms responsible for phosphate removal from water were investigated. The nSD-KF were green-synthesized by ball mill grinder and phosphate solutions with various concentrations were performed. The results revealed that the maximum adsorption capacity (qmax) value of nSD-KF was 50,000 µg/g. In addition, the removal efficiency of nSD-KF significantly increased with the increase of initial phosphate concentration, contact time, temperature, and dosage. However, it decreased with the increase of pH and in double-system solution with the presence of ammonium ions. At the application study, the nSD-KF successfully removed 87.82% and 92.09% of phosphate from real agricultural wastewater in a batch experiment and in a column experiment, respectively. Adsorption efficiency of nSD-KF for phosphate increased after the first and second regeneration cycles, but it decreased after the third and fourth cycles. The poor to moderate phosphate desorption from nSD-KF sorbent indicates the stability of phosphate bound to nSD-KF materials. Regardless, biodegradability of nSD-KF-loaded phosphate is possible, and it will be a good source of phosphate to a plant when added to the agricultural soil as a supplemental application of fertilizer. In conclusion, nSD-KF could be considered as a promising lignocellulosic biomaterial used for the removal of phosphate from waters as bio-sorption process.


2020 ◽  
Vol 21 (1) ◽  
pp. 46
Author(s):  
Siti Wahidah Puasa ◽  
Kamariah Noor Ismail ◽  
Muhammad Amarul Aliff Bin Mahadi ◽  
Nur Ain Zainuddin ◽  
Mohd Nazmi Mohd Mukelas

Wastewater produced from the electroplating industry generally consists of heavy metals mixture and organic materials that need to be treated before it can be discharged to the environment. Thus, the present investigation was focused on the selectivity removal of heavy metal mixtures consists of Copper (Cu), Cadmium (Cd), and Zinc (Zn). Several operating conditions, including the effect of pH and coagulant (FeCl3) dosage, were varied to find the best performance of heavy metal removal. Results show the efficiency of heavy metals removal for both wastewater characteristics were approximately 99%. The experimental data on the treatment of synthetic wastewater was plotted using polynomial regression (PR) via Excel software. The value of adjusted R2 obtained for the final concentration of Cu, Zn, and Cd after treatment were 0.6884, 0.9676, and 0.9283, respectively, which shows data were acceptably fitted for Cu and very well fitted for Zn and Cd. The coagulation/flocculation process performed on actual wastewater shows that the lowest final concentration of Cu, Zn, and Cd after treatment were 0.487, 1.232, and 0 mg/L respectively at pH of 12.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 608
Author(s):  
Aixin Yu ◽  
Yuankun Liu ◽  
Xing Li ◽  
Yanling Yang ◽  
Zhiwei Zhou ◽  
...  

As a key parameter in the adsorption process, removal rate is not available under most operating conditions due to the time and cost of experimental testing. To address this issue, evaluation of the efficiency of NH4+ removal from stormwater by coal-based granular activated carbon (CB-GAC), a novel approach, the response surface methodology (RSM), back-propagation artificial neural network (BP-ANN) coupled with genetic algorithm (GA), has been applied in this research. The sorption process was modeled based on Box-Behnben design (BBD) RSM method for independent variables: Contact time, initial concentration, temperature, and pH; suggesting a quadratic polynomial model with p-value < 0.001, R2 = 0.9762. The BP-ANN with a structure of 4-8-1 gave the best performance. Compared with the BBD-RSM model, the BP-ANN model indicated better prediction of the response with R2 = 0.9959. The weights derived from BP-ANN was further analyzed by Garson equation, and the results showed that the order of the variables’ effectiveness is as follow: Contact time (31.23%) > pH (24.68%) > temperature (22.93%) > initial concentration (21.16%). The process parameters were optimized via RSM optimization tools and GA. The results of validation experiments showed that the optimization results of GA-ANN are more accurate than BBD-RSM, with contact time = 899.41 min, initial concentration = 17.35 mg/L, temperature = 15 °C, pH = 6.98, NH4+ removal rate = 63.74%, and relative error = 0.87%. Furthermore, the CB-GAC has been characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET). The isotherm and kinetic studies of the adsorption process illustrated that adsorption of NH4+ onto CB-GAC corresponded Langmuir isotherm and pseudo-second-order kinetic models. The calculated maximum adsorption capacity was 0.2821 mg/g.


Author(s):  
Muhammad Ali Inam ◽  
Rizwan Khan ◽  
Kang-Hoon Lee ◽  
Young-Min Wie

The chronic ingestion of arsenic (As) contaminated water has raised significant health concerns worldwide. Iron-based coagulants have been widely used to remove As oxyanions from drinking water sources. In addition, the system’s ability to lower As within the maximum acceptable contamination level (MCL) is critical for protecting human health from its detrimental effects. Accordingly, the current study comprehensively investigates the performance of As removal under various influencing factors including pH, contact time, temperature, As (III, V) concentration, ferric chloride (FC) dose, and interfering ions. The optimum pH for As (V) removal with FC was found to be pH 6–7, and it gradually decreased as the pH increased. In contrast, As (III) removal increased with an increase in pH with an optimum pH range of 7–10. The adsorption of As on precipitated iron hydroxide (FHO) was better fitted with pseudo-second order and modified Langmuir–Freundlich models. The antagonistic effect of temperature on As removal with FC was observed, with optimum temperature of 15–25 °C. After critically evaluating the optimum operating conditions, the uptake indices of both As species were developed to select appropriate an FC dose for achieving the MCL level. The results show that the relationship between residual concentration, FC dose, and adsorption affinity of the system was well represented by uptake indices. The higher FC dose was required for suspensions containing greater concentration of As species to achieve MCL level. The As (V) species with a greater adsorption affinity towards FHO require a relatively smaller FC dose than As (III) ions. Moreover, the significant influence of interfering species on As removal was observed in simulated natural water. The author hopes that this study may help researchers and the drinking water industry to develop uptake indices of other targeted pollutants in achieving MCL level during water treatment operations in order to ensure public health safety.


Sign in / Sign up

Export Citation Format

Share Document