scholarly journals Inorganic carbon removal from refinery wastewater by using TiO2/ZnO/Fenton photocatalyst

2018 ◽  
Vol 20 (2) ◽  
pp. 216-225

The aim of this study is to investigate the performance of the solar photocatalyst of TiO2/ZnO/Fenton process to treat the refinery wastewater and remove inorganic carbon (IC) which potentially toxic to human, aquatic and microorganism life. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, Fe2+ dosage, H2O2 dosage, and pH to identify the optimum operating conditions. Quadratic models for inorganic carbon (IC) removal and residual iron prove to be significant with low probabilities (<0.0001). The (IC) removal rates and residual iron correspond well with the predicted models. The maximum removal rate for IC and residual iron was 92.3% and 0.013, respectively at optimum operational conditions of a TiO2 dosage (0.3 g/l), ZnO dosage (0.58 g/l), Fe2+ dosage (0.02 g/l), H2O2 dosage (2.7 g/l), and pH (7). The treatment process achieved higher degradation efficiencies for IC and reduced the treatment time comparing with other related processes.

2016 ◽  
Vol 74 (6) ◽  
pp. 1312-1325 ◽  
Author(s):  
Dheeaa al deen Atallah Aljuboury ◽  
Puganeshwary Palaniandy ◽  
Hamidi Bin Abdul Aziz ◽  
Shaik Feroz ◽  
Salem S. Abu Amr

The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO2/ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (&lt;0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.


2012 ◽  
Vol 599 ◽  
pp. 387-390
Author(s):  
Xing Yu Bian ◽  
Xing Sheng Kang ◽  
Yi Li ◽  
Yu Lin Sun ◽  
Min Kong ◽  
...  

In this paper, chemical and biological flocculation and suspended medium process was applied to treat low concentration municipal wastewater in a pilot scale test in order to find the optimum operational parameter. The results showed that: system on pollutant removal mainly on chemical and biological flocculation reaction pool, Under the optimal operating condition, CODCr, TP and SS removal efficiencies reached 75.5%, 76%and 90.5% respectively, and the CODCr, TP, SS concentrations of effluent meet the National Wastewater Integrated Discharge Standard. The optimum operating conditions according to the local actual situation, running for more than half a year, for the optimization of control parameters for the contrast obtained.


2015 ◽  
Vol 73 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Ahmed H. Hilles ◽  
Salem S. Abu Amr ◽  
Rim A. Hussein ◽  
Anwar I. Arafa ◽  
Olfat D. El-Sebaie

The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (&lt;0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O82−, 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O82−/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.


2021 ◽  

<p>Conversion of ammonia to nitrate is sensitive to a number of inhibitors. There is limited information on the nitrification inhibition coefficient and kinetic model in the current literature. Octyl Phenol Ethoxylate (OPE) and Bisphenol A (BPA) inhibition constants were found in nitrogen removal using an activated sludge system. Firstly, OPE and BPA free wastewater was used to determine the optimum operating conditions. The effect of OPE and BPA concentration on system performance was investigated. The ammonium removal rate was less affected by lower OPE and BPA concentrations. When the BPA and OPE concentrations were increased from 0 mg/L to 30 mg/L, the outlet ammonium nitrogen concentrations were increased respectively from 2.8 mg/L to 49.8 mg/L and from 2.6 mg/L to 20.40 mg/L. Due to the inhibition created by these compounds on Nitrobacter, nitrite nitrogen increased in the medium. As the OPE and BPA concentrations increased, the conversion rate of the ammonium nitrogen into nitrate decreased. Based on the experimental results, a kinetic model was developed, and the OPE and BPA inhibition constants (KOPE and KBPA) were found to be 40.7 mg/L and 11.76 mg/L, respectively. In nitrogen removal, BPA created a higher inhibition effect in comparison to OPE.</p>


Author(s):  
Hussein I. Abdel-Shafy ◽  
Rehan M. M. Morsy ◽  
Mahmoud A. I. Hewehy ◽  
Taha M. A. Razek ◽  
Maamoun M. A. Hamid

Abstract A real industrial electroplating rinsing wastewater was collected and subjected the physical and chemical examination. The study showed that it can be categorized as high strength wastewater, at pH- 2, COD 1430 mg/l, and high level of metals above permissible limits namely: 150, 30, 25, and 2.9 for Ni, Cu, Zn, and Fe mg/l respectively. Therefore, metals must be adequately removed before discharging to avoid any hazardous impact on the environment. Similar synthetic wastewater was prepared to study effect of chemical coagulation for the precipitation of metals. The optimum removal rate was achieved by using a combination of lime and ferric chloride at 100 and 30 mg/l respectively. The chemically treated electroplating wastewater was subjected to an electrocoagulation study. A comparison between iron and stainless-steel electrodes for the removal of metals was investigated. Furthermore, the effect of different electric voltage, and the contact time on metals removal efficiency were also examined. It was found that the optimum removal capacity was achieved when stainless steel electrode was employed in the presence of ferric chloride as coagulant, at 10 volts, 30 min. contact time, and pH 9 for synthetic solution. In a batch treatment system, the real industrial wastewater was treated at the predetermined optimum operating conditions; the removal of metals was 92.1%, 87.8% and 82.9% for Ni. Zn, and Cu respectively. By employing a continuous flow reactor for the treatment of the same real wastewater and under the same operating conditions; metals removal rate increased to 98.9%, 97.4% and 96.6% for Ni. Zn, and Cu respectively. The level of metals in the final treated wastewater copes with Egyptian Environmental Regulation. The overall results confirmed that the electro-coagulation (EC) technology offers an effective alternative process in combination with the conventional chemical coagulation process for reaching high removal performance of toxic metals from the electroplating wastewater. The advantage of EC technique is achieving high treatment efficiency instead of expensive chemical reagents, high construction cost and/or other conventional processes. In addition, the final treated water can be reused for rinsing process in electroplating industry and/or discharging without any environmental hazard effect. It is also recommended to employ solar energy instead of electricity to reduce cost of operation.


2010 ◽  
Vol 62 (6) ◽  
pp. 1304-1311 ◽  
Author(s):  
Huaili Zheng ◽  
Huiqin Zhang ◽  
Xiaonan Sun ◽  
Peng Zhang ◽  
Tiroyaone Tshukudu ◽  
...  

Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2 +  concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of −dC/dt = 0.0337 [malachite green]0.9860[Fe2 + ]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 206 ◽  
Author(s):  
Muhammad Haris Hamayun ◽  
Ibrahim M. Maafa ◽  
Murid Hussain ◽  
Rabya Aslam

In the recent era, hydrogen has gained immense consideration as a clean-energy carrier. Its storage is, however, still the main hurdle in the implementation of a hydrogen-based clean economy. Liquid organic hydrogen carriers (LOHCs) are a potential option for hydrogen storage in ambient conditions, and can contribute to the clean-fuel concept in the future. In the present work, a parametric and simulation study was carried out for the storage and release of hydrogen for the methylcyclohexane toluene system. In particular, the methylcyclohexane dehydrogenation reaction is investigated over six potential catalysts for the temperature range of 300–450 °C and a pressure range of 1–3 bar to select the best catalyst under optimum operating conditions. Moreover, the effects of hydrogen addition in the feed mixture, and byproduct yield, are also studied as functions of operating conditions. The best catalyst selected for the process is 1 wt. % Pt/γ-Al2O3. The optimum operating conditions selected for the dehydrogenation process are 360 °C and 1.8 bar. Hydrogen addition in the feed reduces the percentage of methylcyclohexane conversion but is required to enhance the catalyst’s stability. Aspen HYSYS v. 9.0 (AspenTech, Lahore, Pakistan) has been used to carry out the simulation study.


2021 ◽  
Vol 13 (11) ◽  
pp. 6490
Author(s):  
Farea Asif ◽  
Muhammad Haris Hamayun ◽  
Murid Hussain ◽  
Arif Hussain ◽  
Ibrahim M. Maafa ◽  
...  

The depletion of conventional energy resources has drawn the world’s attention towards the use of alternate energy resources, which are not only efficient but sustainable as well. For this purpose, hydrogen is considered the fuel of the future. Liquid organic hydrogen carriers (LOHCs) have proved themselves as a potential option for the release and storage of hydrogen. The present study is aimed to analyze the performance of the perhydro-dibenzyl-toluene (PDBT) dehydrogenation system, for the release of hydrogen, under various operational conditions, i.e., temperature range of 270–320 °C, pressure range of 1–3 bar, and various platinum/palladium-based catalysts. For the operational system, the optimum operating conditions selected are 320 °C and 2 bar, and 2 wt. % Pt/Al2O3 as a suitable catalyst. The configuration is analyzed based on exergy analysis i.e., % exergy efficiency, and exergy destruction rate (kW), and two optimization strategies are developed using principles of process integration. Based on exergy analysis, strategy # 2, where the product’s heat is utilized to preheat the feed, and utilities consumption is minimized, is selected as the most suitable option for the dehydrogenation system. The process is simulated and optimized using Aspen HYSYS® V10.


2014 ◽  
Vol 16 (2) ◽  
pp. 31-35 ◽  
Author(s):  
Ilona Trawczyńska ◽  
Marek Wójcik

Abstract Permeabilization was used for the purpose of transforming the cells of microorganisms into biocatalysts with an enhanced enzyme activity. Baker’s yeast cells were permeabilized with various organic solvents. A high degree of catalase activity was observed upon permeabilization with acetone, chloroform, isopropyl alcohol and ethyl acetate. Response surface methodology was used to model the effect of concentration of isopropyl alcohol, temperature and treatment time on the permeabilization of baker’s yeast cells to maximize the decomposition of H2O2. The optimum operating conditions for permeabilization were observed at 53.7% concentration of isopropyl alcohol, treatment time of 40 min and temperature of 15.6oC. A maximum value of catalase activity was found to be 6.188 U/g wet wt. and was ca. 60 times higher than the catalytic activity of yeast not treated by the permeabilization process.


Author(s):  
M. N. Braimah

The study carried out simulation of the Crude Distillation Unit (CDU) of the New Port Harcourt Refinery (NPHR) and performed exergy analysis of the Refinery. The Crude Distillation Unit (CDU) of the New Port Harcourt refinery was simulated using HYSYS (2006.5). The Atmospheric Distillation Unit (ADU) which is the most inefficient unit and where major separation of the crude occurs was focused on. The simulation result was exported to Microsoft Excel Spreadsheet for exergy analysis. The ADU was optimized using statistical method and Artificial Neural Network. Box-Behnken model was applied to the sensitive operating variables that were identified. The statistical analysis of the RSM was carried out using Design Expert (6.0). Matlab software was used for the Artificial Neural Network. All the operating variables were combined to give the best optimum operating conditions. Exergy efficiency of the ADU was 51.9% and 52.4% when chemical exergy was included and excluded respectively. The optimum operating conditions from statistical optimization (RSM) are 586.1 K for liquid inlet temperature, 595.5 kPa for liquid inlet pressure and condenser pressure of 124 kPa with exergy efficiency of 69.6% which is 33.0% increment as compared to the base case. For the ANN optimization, the exergy efficiency of the ADU was estimated to be 70.6%. This gave an increase of 34.9% as compared to the base case. This study concluded that enormous improvement can be achieved both in design feasibility and improved efficiency if the feed operating parameters and other sensitive parameters are carefully chosen. Furthermore, ANN optimization gave better exergy efficiency of 70.6% than RSM optimization of 69.6%.


Sign in / Sign up

Export Citation Format

Share Document