scholarly journals Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

2012 ◽  
Author(s):  
J.L. Sullivan ◽  
C.E. Clark ◽  
L. Yuan ◽  
J. Han ◽  
M. Wang
2010 ◽  
Author(s):  
J. L. Sullivan ◽  
C. E. Clark ◽  
J. Han ◽  
M. Wang

2011 ◽  
Author(s):  
Joel Andruski ◽  
Thomas E. Drennen

Author(s):  
Hafþór Ægir Sigurjónsson ◽  
David Cook ◽  
Brynhildur Davíðsdóttir ◽  
Sigurður G. Bogason

Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Mahmoud Hefny ◽  
Amer Al-Hinai ◽  
...  

AbstractDihydrogen (H2), commonly named ‘hydrogen’, is increasingly recognised as a clean and reliable energy vector for decarbonisation and defossilisation by various sectors. The global hydrogen demand is projected to increase from 70 million tonnes in 2019 to 120 million tonnes by 2024. Hydrogen development should also meet the seventh goal of ‘affordable and clean energy’ of the United Nations. Here we review hydrogen production and life cycle analysis, hydrogen geological storage and hydrogen utilisation. Hydrogen is produced by water electrolysis, steam methane reforming, methane pyrolysis and coal gasification. We compare the environmental impact of hydrogen production routes by life cycle analysis. Hydrogen is used in power systems, transportation, hydrocarbon and ammonia production, and metallugical industries. Overall, combining electrolysis-generated hydrogen with hydrogen storage in underground porous media such as geological reservoirs and salt caverns is well suited for shifting excess off-peak energy to meet dispatchable on-peak demand.


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

2019 ◽  
Vol 28 (1) ◽  
pp. 131-158
Author(s):  
Hanbyeol Yoo ◽  
T.J. Lah

2018 ◽  
Author(s):  
Timothy J Skone ◽  
Greg Schivley ◽  
Matthew Jamieson ◽  
Joe Marriott ◽  
Greg Cooney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document