Structural Characterization of Gallbladder Stones Using Energy Dispersive X-ray Spectroscopy and X-ray Diffraction

2018 ◽  
Vol 21 (7) ◽  
pp. 495-500 ◽  
Author(s):  
Hassan A. Almarshad ◽  
Sayed M. Badawy ◽  
Abdalkarem F. Alsharari

Aim and Objective: Formation of the gallbladder stones is a common disease and a major health problem. The present study aimed to identify the structures of the most common types of gallbladder stones using X-ray spectroscopic techniques, which provide information about the process of stone formation. Material and Method: Phase and elemental compositions of pure cholesterol and mixed gallstones removed from gallbladders of patients were studied using energy-dispersive X-ray spectroscopy combined with scanning electron microscopy analysis and X-ray diffraction. Results: The crystal structures of gallstones which coincide with standard patterns were confirmed by X-ray diffraction. Plate-like cholesterol crystals with laminar shaped and thin layered structures were clearly observed for gallstone of pure cholesterol by scanning electron microscopy; it also revealed different morphologies from mixed cholesterol stones. Elemental analysis of pure cholesterol and mixed gallstones using energy-dispersive X-ray spectroscopy confirmed the different formation processes of the different types of gallstones. Conclusion: The method of fast and reliable X-ray spectroscopic techniques has numerous advantages over the traditional chemical analysis and other analytical techniques. The results also revealed that the X-ray spectroscopy technique is a promising technique that can aid in understanding the pathogenesis of gallstone disease.

2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Mutia Dewi Yuniati ◽  
Feronika Cinthya Mawarni Putri Wawuru ◽  
Anggoro Tri Mursito ◽  
Iwan Setiawan ◽  
Lediyantje Lintjewas

Magnesite (MgCO3) is the main source for production of magnesium and its compound. In Indonesia, magnesite is quite rare and can be only found in limited amount in Padamarang Island, Southeast Sulawesi Provence. Thus the properties of magnesite and the reactivity degree of the obtained product are of technological importance. The aim of this work was to analyze the characteristics of Padamarang magnesite under calcination and hydrothermal treatment processes. The processes were carried out at various temperatures with range of 150-900°C for 30 minutes. The solids were characterized with respect to their chemical and physical properties by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). SEM image indicates that magnesite was formed from thin and flat hexagon sheets. The FTIR and XRD analysis disclose that MgO formed at temperature above 300°C, where as the magnesite sample also lost its mass around 50%. These results demonstrate that Padamarang magnesite decomposes to magnesium oxide and carbon dioxide at high temperature.Magnesit (MgCO3) merupakan sumber utama untuk produksi magnesium dan senyawa-senyawanya. Di Indonesia, magnesit cukup jarang dan hanya dapat ditemukan dalam jumlah yang terbatas di Pulau Padamarang, Propinsi Sulawesi Tenggara. Oleh karena itu sifat magnesit dan derajat reaktivitas dari produk-produk magnesit penting untuk diketahui. Penelitian ini bertujuan untuk menganalisis karakteristik magnesit Padamarang dengan perlakuan kalsinasi dan hidrothermal.  Proses dilakukan pada temperatur yang bervariasi dari 150-900°C selama 30 menit. Sifat kimia dan fisika dari magnesit dikarakterisasi dengan menggunakan scanning electron microscopy dengan energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dan X-ray diffraction (XRD). Gambar dari analisis SEM menunjukkan bahwa magnesit terbentuk dari lembaran-lembaran heksagonal yang tipis dan datar. Hasil analisis dengan FTIR dan XRD menunjukkan bahwa MgO terbentuk pada temperatur diatas 300°C, dimana sampel magnesit juga kehilangan massanya sekitar 50% pada suhu tersebut. Hal ini menunjukkan bahwa Magnesit Padamarang terdekomposisi menjadi magnesium oksida dan karbon dioksida pada temperatur tinggi.


2020 ◽  
Author(s):  
Ross Anderson ◽  
et al.

Supplemental methodological details, antibacterial properties of clays, other minerals with distinct fossil/matrix distributions, summaries of mineralogy by taxon, data tables, statistical summaries, and light/scanning electron microscopy–energy-dispersive X-ray spectroscopy images of fossil specimens showing X-ray diffraction selected areas.<br>


2011 ◽  
Vol 243-249 ◽  
pp. 4687-4690 ◽  
Author(s):  
Xiu Juan Li

The microstructure of cement test block and the C-S-H gel attacked by magnesium sulfate is observed by means of scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).It is found that the presence of Mg2+ makes C-S-H gel decalcify, dissolve and decompose, which thereby increasing the erosion of SO42- on the concrete. The decomposition of C-S-H and the generation of M-S-H result in the loss of concrete strength and the ultimate destruction of concrete.


2010 ◽  
Vol 636-637 ◽  
pp. 531-537 ◽  
Author(s):  
M.J. Furtado ◽  
Rui Jorge C. Silva ◽  
M.F. Araújo ◽  
Francisco Manuel Braz Fernandes

Twenty brass Chinese cash coins with complex compositions were studied for a better understanding of the metallurgical cash production in China, during the 17th, 18th and 19th centuries. Elemental composition was obtained through energy-dispersive micro X-ray fluorescence spectrometry of small cleaned areas on the coins rims. Results showed that these brass alloys (Cu-Zn) frequently contain up to 3% Sn, have highly variable Pb content (from n.d. up to 14%) and Fe, Sb, and As as minor elements. Microstructures were assessed by optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, and preliminary micro X-ray diffraction analysis. All the coins present typical as-cast microstructures although very fine-grained, which are supported by binary (Cu-Zn) and ternary (Cu-Zn-Sn) equilibrium phase diagrams, that explain microstructural differences due to the presence of Sn in these brasses.


Sign in / Sign up

Export Citation Format

Share Document