Collaborative Scheduling of Algorithms for Path Planning of Unmanned Systems

2021 ◽  
Vol 01 ◽  
Author(s):  
Ying Li ◽  
Chubing Guo ◽  
Jianshe Wu ◽  
Xin Zhang ◽  
Jian Gao ◽  
...  

Background: Unmanned systems have been widely used in multiple fields. Many algorithms have been proposed to solve path planning problems. Each algorithm has its advantages and defects and cannot adapt to all kinds of requirements. An appropriate path planning method is needed for various applications. Objective: To select an appropriate algorithm fastly in a given application. This could be helpful for improving the efficiency of path planning for Unmanned systems. Methods: This paper proposes to represent and quantify the features of algorithms based on the physical indicators of results. At the same time, an algorithmic collaborative scheme is developed to search the appropriate algorithm according to the requirement of the application. As an illustration of the scheme, four algorithms, including the A-star (A*) algorithm, reinforcement learning, genetic algorithm, and ant colony optimization algorithm, are implemented in the representation of their features. Results: In different simulations, the algorithmic collaborative scheme can select an appropriate algorithm in a given application based on the representation of algorithms. And the algorithm could plan a feasible and effective path. Conclusion: An algorithmic collaborative scheme is proposed, which is based on the representation of algorithms and requirement of the application. The simulation results prove the feasibility of the scheme and the representation of algorithms.

2011 ◽  
Vol 328-330 ◽  
pp. 1881-1886
Author(s):  
Cen Zeng ◽  
Qiang Zhang ◽  
Xiao Peng Wei

Genetic algorithm (GA), a kind of global and probabilistic optimization algorithms with high performance, have been paid broad attentions by researchers world wide and plentiful achievements have been made.This paper presents a algorithm to develop the path planning into a given search space using GA in the order of full-area coverage and the obstacle avoiding automatically. Specific genetic operators (such as selection, crossover, mutation) are introduced, and especially the handling of exceptional situations is described in detail. After that, an active genetic algorithm is introduced which allows to overcome the drawbacks of the earlier version of Full-area coverage path planning algorithms.The comparison between some of the well-known algorithms and genetic algorithm is demonstrated in this paper. our path-planning genetic algorithm yields the best performance on the flexibility and the coverage. This meets the needs of polygon obstacles. For full-area coverage path-planning, a genotype that is able to address the more complicated search spaces.


2021 ◽  
pp. 1-16
Author(s):  
Zhaojun Zhang ◽  
Rui Lu ◽  
Minglong Zhao ◽  
Shengyang Luan ◽  
Ming Bu

The research of path planning method based on genetic algorithm (GA) for the mobile robot has received much attention in recent years. GA, as one evolutionary computation model, mimics the process of natural evolution and genetics. The quality of the initial population plays an essential role in improving the performance of GA. However, when GA based on a random initialization method is applied to path planning problems, it will lead to the emergence of infeasible solutions and reduce the performance of the algorithm. A novel GA with a hybrid initialization method, termed NGA, is proposed to solve this problem in this paper. In the initial population, NGA first randomly selects three free grids as intermediate nodes. Then, a part of the population uses a random initialization method to obtain the complete path. The other part of the population obtains the complete path using a greedy-related method. Finally, according to the actual situation, the redundant nodes or duplicate paths in the path are deleted to avoid the redundant paths. In addition, the deletion operation and the reverse operation are also introduced to the NGA iteration process to prevent the algorithm from falling into the local optimum. Simulation experiments are carried out with other algorithms to verify the effectiveness of the NGA. Simulation results show that NGA is superior to other algorithms in convergence accuracy, optimization ability, and success rate. Besides, NGA can generate the optimal feasible paths in complex environments.


Robotica ◽  
1998 ◽  
Vol 16 (5) ◽  
pp. 575-588 ◽  
Author(s):  
Andreas C. Nearchou

A genetic algorithm for the path planning problem of a mobile robot which is moving and picking up loads on its way is presented. Assuming a findpath problem in a graph, the proposed algorithm determines a near-optimal path solution using a bit-string encoding of selected graph vertices. Several simulation results of specific task-oriented variants of the basic path planning problem using the proposed genetic algorithm are provided. The results obtained are compared with ones yielded by hill-climbing and simulated annealing techniques, showing a higher or at least equally well performance for the genetic algorithm.


2018 ◽  
Vol 48 (12) ◽  
pp. 4889-4904 ◽  
Author(s):  
Xingyu Zhao ◽  
Shifei Ding ◽  
Yuexuan An ◽  
Weikuan Jia

2014 ◽  
Vol 614 ◽  
pp. 199-202 ◽  
Author(s):  
Bao Ming Shan ◽  
De Xiang Zhang

This paper presents a method for robot path planning based on ant colony optimization algorithm, in order to resolve the weakness of ant colony algorithm such as slow convergence rate and easy to fall into local optimum and traps. This method uses anti-potential field to make the robot escape from them smoothly, and at the end of each cycle, uses the way of judge first and then hybridization to optimize the algorithm. Finally, the simulation results show that the performance of the algorithm has been improved, and proved that the optimization algorithm is valid and feasible.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012023
Author(s):  
Mengchen Sun

Abstract Path selection is the most important algorithm in intelligent devices such as robots. At present, the traditional path-planning algorithm has achieved some results, but it lacks the ability of environmental perception and continuous learning. In order to solve the above problems, this paper proposes an intelligent path selection algorithm based on deep reinforcement learning, which uses the learning ability of deep learning and the decision-making ability of reinforcement learning to realize the autonomous path planning of robots and other equipment. Simulation results show that the proposed algorithm has faster convergence, efficiency and accuracy.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zheng Fang ◽  
Xifeng Liang

Purpose The results of obstacle avoidance path planning for the manipulator using artificial potential field (APF) method contain a large number of path nodes, which reduce the efficiency of manipulators. This paper aims to propose a new intelligent obstacle avoidance path planning method for picking robot to improve the efficiency of manipulators. Design/methodology/approach To improve the efficiency of the robot, this paper proposes a new intelligent obstacle avoidance path planning method for picking robot. In this method, we present a snake-tongue algorithm based on slope-type potential field and combine the snake-tongue algorithm with genetic algorithm (GA) and reinforcement learning (RL) to reduce the path length and the number of path nodes in the path planning results. Findings Simulation experiments were conducted with tomato string picking manipulator. The results showed that the path length is reduced from 4.1 to 2.979 m, the number of nodes is reduced from 31 to 3 and the working time of the robot is reduced from 87.35 to 37.12 s, after APF method combined with GA and RL. Originality/value This paper proposes a new improved method of APF, and combines it with GA and RL. The experimental results show that the new intelligent obstacle avoidance path planning method proposed in this paper is beneficial to improve the efficiency of the robotic arm. Graphical abstract Figure 1 According to principles of bionics, we propose a new path search method, snake-tongue algorithm, based on a slope-type potential field. At the same time, we use genetic algorithm to strengthen the ability of the artificial potential field method for path searching, so that it can complete the path searching in a variety of complex obstacle distribution situations with shorter path searching results. Reinforcement learning is used to reduce the number of path nodes, which is good for improving the efficiency of robot work. The use of genetic algorithm and reinforcement learning lays the foundation for intelligent control.


Sign in / Sign up

Export Citation Format

Share Document