Scope and Challenges of 3D Printing in Organ Transplantation

2021 ◽  
Vol 07 ◽  
Author(s):  
Naman Shah ◽  
Sarthak Jain ◽  
Priyal Jain ◽  
Mamta Thakur

Background: The influx of 3D printing in organ transplantation is currently a vigorous area of research and its success is still cynical. The review article focuses mainly on the scope and challenges in the applications of 3D printing in organ transplantation. The basic idea of the article is to highlight the current status of 3D printing in the area of organ transplant. Introduction: The review article covers the highlights of 3D printing, major steps incurred in the 3D printing of organs, challenges in the 3D printing and transplantation of organs and future prospects (Scope) in the area with special reference to the problem and failures encountered in organ transplantation of 3D printed organs. Method: The findings from available studies have been consolidated in the review article to have an insight into the scope and challenges in the area of 3D printed organ transplantation. Result: In this review study, it has been found that there are certain limitations of the 3D printed material based on the survival and multiplication in the in-vivo environment, which subsequently leads to the bio incompatibility of the organs. In addition to this, some other limitations which provide further scope of research in this area are also included. Conclusion: It has been concluded that 3D printing is an emerging solution in organ transplantation and prosthetics, but still, more refinement and technological advancement is needed to make it a completely feasible solution. The joint team of doctors, scientists and engineers need to work cross disciplinary to overcome the limitations and to develop this technique further for the betterment of mankind.

Author(s):  
Nitin Nagesh Kulkarni ◽  
Stephen Ekwaro-Osire ◽  
Paul F. Egan

Abstract 3D printing has enabled new avenues to design and fabricate diverse structures for engineering applications, such as mechanically efficient lattices. Lattices are useful as implants for biological applications for supporting in vivo loads. However, inconsistencies in 3D printing motivates a need to quantify uncertainties contributing to mechanical failure using probabilistic analysis. Here, 50 cubic unit cell lattice samples were printed and tested with designs of 50% porosity, 500-micron beam diameters, and 3.5mm length, width, and height dimensions. The average length, width, and height measurements ranged from 3.47mm to 3.48mm. The precision in printing with a 95% confidence level was greater than 99.8%. Lattice elastic moduli ranged from about 270 MPa to 345 MPa, with a mean of 305 MPa. Probabilistic analyses were conducted with NESSUS software. The distributions of input parameters were determined using a chi-square test. The first-order reliability method was used to calculate the probability of failure and sensitivity of each input parameter. The elastic modulus was the most sensitive among all input parameters, with 57% of the total sensitivity. The study quantified printing inconsistencies and sensitives using empirical evidence and is a significant step forward for designing 3D printed parts for mechanical applications.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1577
Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing has been increasingly used in medicine with applications in many different fields ranging from orthopaedics and tumours to cardiovascular disease. Realistic 3D models can be printed with different materials to replicate anatomical structures and pathologies with high accuracy. 3D printed models generated from medical imaging data acquired with computed tomography, magnetic resonance imaging or ultrasound augment the understanding of complex anatomy and pathology, assist preoperative planning and simulate surgical or interventional procedures to achieve precision medicine for improvement of treatment outcomes, train young or junior doctors to gain their confidence in patient management and provide medical education to medical students or healthcare professionals as an effective training tool. This article provides an overview of patient-specific 3D printed models with a focus on the applications in cardiovascular disease including: 3D printed models in congenital heart disease, coronary artery disease, pulmonary embolism, aortic aneurysm and aortic dissection, and aortic valvular disease. Clinical value of the patient-specific 3D printed models in these areas is presented based on the current literature, while limitations and future research in 3D printing including bioprinting of cardiovascular disease are highlighted.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3117
Author(s):  
Krzysztof Rodzeń ◽  
Mary Josephine McIvor ◽  
Preetam K. Sharma ◽  
Jonathan G. Acheson ◽  
Alistair McIlhagger ◽  
...  

Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedics and has shown a lot of promise for ‘made-to-measure’ implants via additive manufacturing approaches. However, PEEK is bioinert and needs to undergo surface modification to make it at least osteoconductive to ensure a more rapid, improved, and stable fixation that will last longer in vivo. One approach to solving this issue is to modify PEEK with bioactive agents such as hydroxyapatite (HA). The work reported in this study demonstrates the direct 3D printing of PEEK/HA composites of up to 30 weight percent (wt%) HA using a Fused Filament Fabrication (FFF) approach. The surface characteristics and in vitro properties of the composite materials were investigated. X-ray diffraction revealed the samples to be semi-crystalline in nature, with X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealing HA materials were available in the uppermost surface of all the 3D printed samples. In vitro testing of the samples at 7 days demonstrated that the PEEK/HA composite surfaces supported the adherence and growth of viable U-2 OS osteoblast like cells. These results demonstrate that FFF can deliver bioactive HA on the surface of PEEK bio-composites in a one-step 3D printing process.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohan Prasath Mani ◽  
Madeeha Sadia ◽  
Saravana Kumar Jaganathan ◽  
Ahmad Zahran Khudzari ◽  
Eko Supriyanto ◽  
...  

Abstract In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.


2016 ◽  
Vol 2 (1) ◽  
pp. 105-108 ◽  
Author(s):  
Florian Schmieder ◽  
Joachim Ströbel ◽  
Mechthild Rösler ◽  
Stefan Grünzner ◽  
Bernd Hohenstein ◽  
...  

AbstractToday’s 3D printing technologies offer great possibilities for biomedical researchers to create their own specific laboratory equipment. With respect to the generation of ex vivo vascular perfusion systems this will enable new types of products that will embed complex 3D structures possibly coupled with cell loaded scaffolds closely reflecting the in-vivo environment. Moreover this could lead to microfluidic devices that should be available in small numbers of pieces at moderate prices. Here, we will present first results of such 3D printed cell culture systems made from plastics and show their use for scaffold based applications.


2021 ◽  
Author(s):  
Salma Essam El-Habashy ◽  
Amal ElKamel ◽  
Marwa Essawy ◽  
Elsayeda-Zeinab Abdelfattah ◽  
Hoda M Eltaher

The versatility of 3D printing has rendered it an indispensable tool for the fabrication of composite hydrogel scaffolds, offering bone biomimetic features through inorganic and biopolymeric components as promising platforms...


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 20
Author(s):  
Xianfu Li ◽  
En Liang ◽  
Xiaoxuan Hong ◽  
Xiaolu Han ◽  
Conghui Li ◽  
...  

Recently, the development of Binder Jet 3D printing technology has promoted the research and application of personalized formulations, which are especially useful for children’s medications. Additionally, physiological pharmacokinetic (PBPK) modeling can be used to guide drug development and drug dose selection. Multiple technologies can be used in combination to increase the safety and effectiveness of drug administration. In this study, we performed in vivo pharmacokinetic experiments in dogs with preprepared 3D-printed levetiracetam instant-dissolving tablets (LEV-IDTs). Bioequivalence analysis showed that the tablets were bioequivalent to commercially available preparations (Spritam®) for dogs. Additionally, we evaluated the bioequivalence of 3D-printed LEV-IDTs with Spritam® by a population-based simulation based on the established PBPK model of levetiracetam for Chinese adults. Finally, we established a PBPK model of oral levetiracetam in Chinese children by combining the physiological parameters of children, and we simulated the PK (pharmacokinetics) curves of Chinese children aged 4 and 6 years that were administered the drug to provide precise guidance on adjusting the dose according to the effective dose range of the drug. Briefly, utilizing both Binder jet 3D printing technology and PBPK models is a promising route for personalized drug delivery with various age groups.


2019 ◽  
Vol 24 (42) ◽  
pp. 4957-4978 ◽  
Author(s):  
Ilias El Aita ◽  
Hanna Ponsar ◽  
Julian Quodbach

Background: In the last decades, 3D-printing has been investigated and used intensively in the field of tissue engineering, automotive and aerospace. With the first FDA approved printed medicinal product in 2015, the research on 3D-printing for pharmaceutical application has attracted the attention of pharmaceutical scientists. Due to its potential of fabricating complex structures and geometrics, it is a highly promising technology for manufacturing individualized dosage forms. In addition, it enables the fabrication of dosage forms with tailored drug release profiles. Objective: The aim of this review article is to give a comprehensive overview of the used 3D-printing techniques for pharmaceutical applications, including information about the required material, advantages and disadvantages of the respective technique. Methods: For the literature research, relevant keywords were identified and the literature was then thoroughly researched. Conclusion: The current status of 3D-printing as a manufacturing process for pharmaceutical dosage forms was highlighted in this review article. Moreover, this article presents a critical evaluation of 3D-printing to control the dose and drug release of printed dosage forms.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lillian M. Tran ◽  
Angus W. Thomson

Application of cell-based immunotherapy in organ transplantation to minimize the burden of immunosuppressive medication and promote allograft tolerance has expanded significantly over the past decade. Adoptively transferred regulatory immune cells prolong allograft survival and transplant tolerance in pre-clinical models. Many cell products are currently under investigation in early phase human clinical trials designed to assess feasibility and safety. Despite rapid advances in manufacturing practices, defining the appropriate protocol that will optimize in vivo conditions for tolerance induction remains a major challenge and depends heavily on understanding the fate, biodistribution, functional stability and longevity of the cell product after administration. This review focuses on in vivo detection and monitoring of various regulatory immune cell types administered for allograft tolerance induction in both pre-clinical animal models and early human clinical trials. We discuss the current status of various non-invasive methods for tracking regulatory cell products in the context of organ transplantation and implications for enhanced understanding of the therapeutic potential of cell-based therapy in the broad context of control of immune-mediated inflammatory disorders.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Prashanth Ravi ◽  
Panos S. Shiakolas

AbstractThe goal of this research is to develop and verify an algorithm to predict the fill density of 3D printed cylindrical constructs as a function of critical slicing parameters. Open-source 3D printing is being applied to the pharmaceutical and biomedical domains where characteristics including drug release rate and compressive strength depend on fill density. Understanding how slicing parameters affect fill density in the printed construct is important to appropriately tailor these characteristics. In this study, we evaluated the relationship between slicing fill density (SFD), extrusion width (EW), layer height (LH), construct diameter and measured fill density (MFD). The developed algorithm provides novel insight into the effects of interconnects and rasters on the distribution of intra-matrix material. We analyze 27 combinations involving 3 levels of EW (0.40, 0.44, 0.48 mm), SFD (15, 25, 35%) and LH (0.15, 0.20, 0.25 mm). The SFD is smaller than and deviates from MFD with a maximum error of 18.62% and from predicted fill density (PFD) with a maximum error of 19.50% compared to the maximum error of 4.30% between PFD and MFD. The predicted interconnect contribution and error reduce with increasing SFD and cylinder diameter but are more prominent at lower values. Our work highlights the perils of employing open-source 3D printing without a sound understanding of the underlying parametric relationships. The proposed predictive model could be used in conjunction with Slic3r, an open-source slicing software, to predict fill density to a reasonable degree of accuracy (less than 5% error) for relatively smaller cylindrical constructs.


Sign in / Sign up

Export Citation Format

Share Document