scholarly journals ESTERIFICATION OF FATTY ACID FROM PALM OIL WASTE (SLUDGE OIL) BY USING ALUM CATALYST

2010 ◽  
Vol 9 (3) ◽  
pp. 491-499 ◽  
Author(s):  
Thamrin Usman ◽  
Lucy Ariany ◽  
Winda Rahmalia ◽  
Romi Advant

Esterification of fatty acids from palm oil waste (sludge oil) as biodiesel liquid base has been done by using alum [Al2(SO4)3.14H2O] catalyst. Some reaction variables like reaction time, catalyst quantity, and molar ratio of sample-reactant was applied for optimal reaction. Yield of 94.66% was obtained at reaction condition 65 °C, 5 h, sample-reactant ratio 1:20, and catalyst quantity 3% (w/w). GC-MS analysis request showed that composition of methyl esters biodiesel are methyl caproic (0.67%), methyl lauric (0.21%), methyl miristic (1.96%), methyl palmitic (49.52%), methyl oleic (41.51%), and methyl stearic (6.13%). Physical properties of synthesized product (viscosity, refraction index and density) are similar with those of commercial product.   Keywords: alum, biodiesel, esterification, sludge oil

DYNA ◽  
2019 ◽  
Vol 86 (209) ◽  
pp. 180-187
Author(s):  
Stephanie Alexa Ñústez Castaño ◽  
Duvan Oswaldo Villamizar Castro ◽  
Edgar Mauricio Vargas Solano

In this study, the catalytic activity of dolomite was evaluated for the transesterification of Colombian RBD palm oil with methanol, carried out in a batch reactor at 333,15K and 600rpm. The activated dolomites (calcined at 1073.15K for 2h) were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Hammett indicators method, and quantification of the surface area, average pore size and average pore volume BET. The influence of reaction variables such as catalyst amount (%wt /wt) and methanol / palm oil molar ratio (mole/mole) was investigated. Under the suitable reaction conditions, the amount of calcined dolomite equal to 4% (wt /wt) based on the weight of oil, the methanol-oil molar ratio equal to 9:1, and the reaction time = 1h, the methyl ester content of 82.67% of fatty acid methyl esters (FAME) can be achieved.


Author(s):  
Vijaya Lakshmi Ch ◽  
Uday Bhaskar R.V.S ◽  
Viswanath Kotra ◽  
Satyavathi Bankupalli

Biodiesel from clean oils is comparatively easier than production from crude and non-edible oils. To achieve maximum yield of biodiesel, a two stage process is adopted in which non-edible oils are used as feed-stock: an acid catalyzed esterification of free fatty acids followed by base catalyzed transesterification. Presence of water formed during esterification reaction is detrimental to a viable transesterification process. In the present work, an alternate method for removal of water by in situ hydrolysis reaction of methyl acetate is introduced. The dehydration using methyl acetate during esterification has yielded good results as the soap formed during transesterification was minimal. The results indicated high conversion of triglycerides to methyl ester for lower oil to methanol ratio and at a lower temperature. For 1:3 molar ratio of oil to methanol, the conversion obtained was less than 90 percent and is equivalent to conversions with higher alcohol ratios during esterification in the absence of methyl acetate. These results are indicative of the fact that use of methyl acetate reduces the alcohol to oil ratio without affecting the conversions. Moreover, higher conversions are possible at lower temperatures in the presence of methyl acetate. It is further observed that the oils that are subjected to free fatty acid conversions in the presence of methyl acetate record very little soap formation during the transesterification reactions, thereby resulting in higher grade of biodiesel.


2021 ◽  
Vol 17 (1) ◽  
pp. 16-19
Author(s):  
Yan Irawan ◽  
Ika Juliana ◽  
Emil Budianto

In this study, the synthesis of palm oil-based polymeric ester for application as a polymeric surfactant was carried out by a cationic addition polymerisation method through two steps. The initial step is a synthesis of fatty acid methyl esters oleate (FAMEO) through esterification reaction between oleic acid and methanol. The optimum conditions of the esterification reaction were carried out at a temperature of 70–80oC for 4 hours with the addition of 1wt% sulfuric acid as a catalyst. The molar ratio between oleic acid and methanol was 1:3. FAMEO was analysed using GCMS to determine the methyl ester content. The second step is the polymerisation of FAMEO. The polymerisation reaction of FAMEO was carried out at 120, 140, and 160oC with 1wt%, 3wt% and 5wt% of boron trifluoride dihydrate as a catalyst and an initiator of polymerisation reaction for 4 to 24 hours of reaction. The reaction conversion of the product was 66%. The polymeric ester was analysed H-NMR. Meanwhile, the molecular weight of that product was 1714 g/mol which analysed using GPC and the PDI was 1.12346 or equal to 1.12. It means that the polymerisation technique was controlled or living polymerisation, which indicates that the distribution type of this product was narrow monodisperse.


2012 ◽  
Vol 581-582 ◽  
pp. 133-137
Author(s):  
Hong Wang ◽  
Yan Lin Sun ◽  
Li Zhang

Abstract: This paper is focused on the preparation of biodiesel from crude rubber seed oil with high free fatty acids (FFA) content. The rubber seeds were collected in Xishuangbanna, Yunnan province. Two-step synthesis was selected to obtain the product, that is, acid catalyzed esterification was carried out first to decrease the FFA content, then methyl esters of fatty acids can be formed by alkaline transesterification. The reaction conditions of alkaline transesterification were investigated. The results show that the optimum technique is to carry out the reaction at 60°C for 1.5h, with the methanol-to-oil molar ratio 6:1, the catalyst amount 1.0% (g NaOH/ g oil). The yield can reach 75%. GC analysis shows the content of methyl esters of fatty acids is 82.29%. Some properties of biodiesel prepared are also presented.


2004 ◽  
Vol 10 (3) ◽  
pp. 157-161 ◽  
Author(s):  
S. K. Lo ◽  
B. S. Baharin ◽  
C. P. Tan ◽  
O. M. Lai

High-purity diacylglycerol (DAG) oil was enzymatically obtained from palm oil deodoriser distillate (PODD). Free fatty acids from PODD were esterified with glycerol (2.5:1 fatty acid to glycerol molar ratio) in the presence of 10% (w/w of oil) Rhizomucor mieheilipase (Lipozyme RM IM) and 30% (w/w of oil) molecular sieves and incubated for 6h at 65 °C in a 50 mL bioreactor. After esterification, the products were deacidified by alkaline extraction and the DAG oil was further purified by silica column chromatography. After purification, up to 85.2% (w/w) of DAG was obtained. DAG profile, fatty acid composition, iodine value, slip melting point and thermal profiles were determined.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1130
Author(s):  
Cherng-Yuan Lin ◽  
Lei Ma

Strong alkaline-catalyst transesterification with short-chain alcohol is generally used for biodiesel production due to its dominant advantages of shorter reaction time and higher conversion rate over other reactions. The existence of excess water content in the feedstock oil might retard the transesterification rate and in turn deteriorate the fuel characteristics of the fatty acid methyl esters. Hence, optimum water content in the raw oil, aimed towards both lower production cost and superior fuel properties, becomes significant for biodiesel research and industrial practices. Previous studies only concerned the influences of water contents on the yield or conversion rate of fatty acid methyl esters through transesterification of triglycerides. The effects of added water in the reactant mixture on burning characteristics of fatty acid methyl esters are thus first investigated in this study. Raw palm oil was added with preset water content before being transesterified. The experimental results show that the biodiesel produced from the raw palm oil containing a 0.05 wt.% added water content had the highest content of saturated fatty acids and total fatty acid methyl esters (FAME), while that containing 0.11 wt.% water content had the lowest content of total FAME and fatty acids of longer carbon chains than C16 among the biodiesel products. Regarding burning characteristics, palm-oil biodiesel made from raw oil with a 0.05 wt.% added water content among those biodiesels was found to have the highest distillation temperatures, flash point, and ignition point, which implies higher safety extents during handling and storage of the fuel. The added water content 0.05 wt.% in raw oil was considered the optimum to produce palm-oil biodiesel with superior fuel structure of fatty acids and burning characteristics. Higher or lower water content than 0.05 wt.% would cause slower nucleophilic substitution reaction and thus a lower conversion rate from raw oil and deteriorated burning characteristics in turn.


Author(s):  
Elsy Arenas ◽  
Aidin Urribarrí ◽  
John Sánchez ◽  
Marisela Rincón ◽  
Karina Martínez ◽  
...  

Large quantities of used vegetable oils (AVUs) are generated annually, as a result of food preparation, which can cause contamination of waters and soils, if they are not disposed of properly, but in turn have great potential in the production of biodiesel. In this work, the AVU collected from fast food establishments were subjected to an esterification pretreatment, varying the reaction conditions, molar ratio, catalyst concentration and time, to decrease the content of free fatty acids generated in the frying processes; after an alkaline transesterification. The initial acidity of the AVUs (10,08 ± 0,22 %) was found to drop below 1 % during esterification at 60 °C and 100 rpm, with RMAVU:MeOH of 1: 7 and HCl concentration of 0.3 % v/v, with a conversion of free fatty acids (FFA) to methyl esters of 94.48 and 98.61 % for reaction times of 4 and 6 hours, respectively. The previously esterified AVUs were subjected to a transesterification process with KOH as a catalyst in the presence of methanol, at 60 °C and 100 rpm, finding that the biodiesel produced was a mixture composed of the methyl esters of linoleic acids (57 %), palmitic (14 %), oleic (22 %), stearic (4 %) and elaidic (3 %). The highest concentration of methyl esters (93,797 ± 0.685 g.L-1) was obtained when using the esterified AVU during 6 hours of reaction. FTIR spectra confirmed the conversion of fatty acids to methyl esters, so this product could be used as a biofuel.


2017 ◽  
Vol 14 (2) ◽  
pp. 254-261
Author(s):  
Baghdad Science Journal

The percentage of fatty acids, quantity of tocopherols, tocotrienols, carotens and physiochemical characteristics of crude red palm oil have been evaluated, in addition to specific chemical detection of active compounds unsaponifiable matters. Results of Gas Liquid Chromatography showed:- The major fatty acids in red palm oil is palmitic (44.36%) then oleic (39.65%), linolenic (10.55%), stearic (3.56%), myristic (1.22%), arachdonic (0.24%) and palmotic (0.19%). Red palm oil contains ? – ?- ?- ? – Tocopherols with concentration 258 , 121 , 259, 109 m/kg oil , ? – ?- ?- ? – Tocotrienol with concentration 462.77 , 571.03, 619.18, 509.07 m/kg oil respectively. Total tocopherols & tocotrienols 2909.05 m/kg oil and 893.63 m/kg oil carotens. Results of physiochemical characteristics revealed that crude red palm oil contains 0.80 ± 0.13% moisture , 58.81 ± 0.24 iodin nomber, 210 ± 1.35 saponifid number, 0.417 pv, 0.7% unsaponifiable matters, 1.4684 refraction index. Specific chemical detection indicated that unsaponifiable matters contains phenols, flavonoids and sterols.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 756D-756
Author(s):  
Benjamin Jeyaretnam ◽  
Hazel Y. Wetzstein ◽  
Sharad C. Phatak ◽  
Russel W. Carlson

Changes in lipid and total protein content of somatic embryos of pecan (Carya illinoinensis) were estimated during maturation, cold treatment alone (3, 5, or 8 weeks) or cold followed by dessication (3, 5, or 7 days). Triglyceride was estimated colorimetrically and methyl esters of fatty acids were analyzed by GC-MS. Total protein was extracted from the same tissue with 2% SDS in Tris·HCL buffer. Triglyceride content of enlarged somatic embryos was significantly lower than zygotic embryos and further declined after 5 weeks cold treatment. An even greater decline was observed during the desiccation treatment. The most abundant fatty acids in small and enlarged somatic embryos are linolenic > palmitic > oleic > stearic acid. However, the molar ratio of linolenic to oleic reached 1:1 after 5 weeks of cold treatment. During enlargement, protein content increased to levels found in zygotic embryos, with desiccation resulting in further elevation.


2018 ◽  
Vol 6 (3) ◽  
pp. 705
Author(s):  
Tirto Prakoso ◽  
Indra B Kurniawan ◽  
R Heru Nugroho

Methyl esters are one of alkyl esters compound that used as alternative diesel fuel became popular. Methyl esters have similarities on physical and chemical properties with the diesel fuel produced from fossil oil; however it has less combustion and environmental emissions. As fossil oil become rare to be exploited, and the rapid environmental issues, the efforts to develop methyl esters as alternative diesel fuel become a prospective one. One method to produce methyl esters from free fatty acids of crude palm oil (CPO) is the two step esterification-transesterification reaction, each step produce the same final product, however differs in the side product. Esterification produce water and transesterfication produce glycerin. The reaction uses alcohol as main reactant beside the free fatty acids, it can be conducted in batch or continuous production. In this research, the investigation is only emphasized in the first step that is the esterification step to produce methyl esters from free fatty acids contained in crude palm oil. Methanol and sulfuric acid are used as reactant and catalyst respectively. Methyl esters produced by esterification is affected by reaction temperature, amounts of catalyst, and methanol volume. The increase in temperature improved esterification conversion from 19% in 50C to 98% in 60C. While the usage of the highest amount of catalyst, 5 ml/1-CPO, led to produced the highest conversion relative to the conversion from 1 and 3 ml/1-CPO catalyst. Furthermore, 10% amount of methanol per volume CPO produced higher yield than 8%.Keywords : Biodiesel,  CPO Free Fatty Acid Esterification, Methyl Ester ConversionAbstrak Metil ester merupakan suatu senyawa alkil ester yang dapat digunakan sebagai bahan bakar alternatif. Metil ester memiliki sifat fisik dan kimia yang hampir sam a dengan minyak diesel yang dihasilkan dari minyak bumi tetapi emisi pembakaran dari penggunaan ester metal lebih rendah dari pada emisi hasil penggunaan minyak solar. Seiring dengan semakin langkanya sumber minyak bumi dan semakin gencarnya isu lingkungan hidup, pengembangan ester metil sebagai bahan bakar pengganti minyak solar semakin prospektif. Pembuatan ester metil dari asam lemak bebas minyak sawit mentah (crude palm oil) dapat dilakukan dengan beberapa cara antara lain dengan reaksi esterifikasi dan transesterifikasi menggunakan alkohol. Reaksi-reaksi ini dapat dilaksanakan secara batch maupun kontinu. Pada penelitian yang telah dilakukan, pembuatan ester metil dari asam lemak bebas minyak sawit mentah dilakukan dengan reaksi esterifikasi secara batch, dengan reaktan berupa minyak sawit mentah dan metanol. Katalis yang digunakan adalah H2SO4. Konversi ester metil yang dihasilkan dipengaruhi oleh temperatur reaksi, konsentrasi katalis dan konsentrasi metanol. Kenaikan temperatur reaksi akan meningkatkan konversi dari 19% pada 50oC menjadi 98% pada 60oC. Dengan menggunakan konsentrasi katalis tertinggi 5ml/l CPO memicu konversi tertinggi relatif dibandingkan nilai konversi dari 1 dan 3 ml/l CPO. 10% metanol menghasilkan perolehan tinggi dibanding 8%.Kata Kunci: Biodiesel, EsterifikasiAsam Lemak Bebas CPO, Konversi Ester Metil


Sign in / Sign up

Export Citation Format

Share Document