scholarly journals On some new paranormed sequence spaces defined by the matrix (D )(r,0,0,s)

2021 ◽  
Vol 40 (3) ◽  
pp. 779-796
Author(s):  
Avinoy Paul

In this paper, we introduce some new paranormed sequence spaces and study some topological properties. Further, we determine α, β and γ-duals of the new sequence spaces and finally, we establish the necessary and sufficient conditions for characterization of matrix mappings.

Author(s):  
Avinoy Paul ◽  
Binod Tripathy

In this paper we introduce new sequence spaces with the help of domain of matrix D(r,0,s,0,t), and study some of their topological properties. Further, we determine ? and ? duals of the new sequence spaces and finally, we establish the necessary and sufficient conditions for characterization of the matrix mappings.


Filomat ◽  
2010 ◽  
Vol 24 (4) ◽  
pp. 35-52 ◽  
Author(s):  
Metin Başarir

In this paper, we define the new generalized Riesz B-difference sequence spaces rq? (p, B), rqc (p, B), rq0 (p, B) and rq (p, B) which consist of the sequences whose Rq B-transforms are in the linear spaces l?(p), c (p), c0(p) and l(p), respectively, introduced by I.J. Maddox[8],[9]. We give some topological properties and compute the ?-, ?- and ?-duals of these spaces. Also we determine the necessary and sufficient conditions on the matrix transformations from these spaces into l? and c.


Author(s):  
Taja Yaying ◽  
Bipan Hazarika ◽  
Mikail Et

In this paper, we introduce Fibonacci backward difference operator [Formula: see text] of fractional order [Formula: see text] by the composition of Fibonacci band matrix [Formula: see text] and difference operator [Formula: see text] of fractional order [Formula: see text] defined by [Formula: see text] and introduce sequence spaces [Formula: see text] and [Formula: see text] We present some topological properties, obtain Schauder basis and determine [Formula: see text]-, [Formula: see text]- and [Formula: see text]-duals of the spaces [Formula: see text] and [Formula: see text] We characterize certain classes of matrix mappings from the spaces [Formula: see text] and [Formula: see text] to any of the space [Formula: see text] [Formula: see text] [Formula: see text] or [Formula: see text] Finally we compute necessary and sufficient conditions for a matrix operator to be compact on the spaces [Formula: see text] and [Formula: see text]


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Muhammed Altun

We focus on sequence spaces which are matrix domains of Banach sequence spaces. We show that the characterization of a random matrix operator , where and are matrix domains with invertible matrices and , can be reduced to the characterization of the operator . As an application, the necessary and sufficient conditions for the matrix operators between invertible matrix domains of the classical sequence spaces and norms of these operators are given.


Filomat ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1233-1241
Author(s):  
Vatan Karakaya ◽  
Necip Imşek ◽  
Kadri Doğan

In this work, we define new sequence spaces by using the matrix obtained by product of factorable matrix and generalized difference matrix of order m. Afterward, we investigate topological structure which are completeness, AK-property, AD-property. Also, we compute the ?-, ?- and ?- duals, and obtain bases for these sequence spaces. Finally we give necessary and sufficient conditions on matrix transformation between these new sequence spaces and c,??.


Author(s):  
Rocio Gonzalez-Diaz ◽  
Darshan Batavia ◽  
Rocio M. Casablanca ◽  
Walter G. Kropatsch

AbstractThis paper provides a theoretical characterization of monotonically connected image surface regions, called slope regions. The characterization is given by several topological properties described in terms of critical points relative to the region. We formally prove the necessary and sufficient conditions that a region needs to satisfy to be a slope region. We also provide a prototype of slope regions which is general and contains, as particular cases, the prototypes studied and published in previous conference papers.


2020 ◽  
Vol 15 (1) ◽  
pp. 258-265
Author(s):  
Yu Zhou ◽  
Daoguang Mu ◽  
Xinfeng Dong

AbstractS-box is the basic component of symmetric cryptographic algorithms, and its cryptographic properties play a key role in security of the algorithms. In this paper we give the distributions of Walsh spectrum and the distributions of autocorrelation functions for (n + 1)-bit S-boxes in [12]. We obtain the nonlinearity of (n + 1)-bit S-boxes, and one necessary and sufficient conditions of (n + 1)-bit S-boxes satisfying m-order resilient. Meanwhile, we also give one characterization of (n + 1)-bit S-boxes satisfying t-order propagation criterion. Finally, we give one relationship of the sum-of-squares indicators between an n-bit S-box S0 and the (n + 1)-bit S-box S (which is constructed by S0).


1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


2018 ◽  
Vol 33 (2) ◽  
pp. 307
Author(s):  
Owais Ahmad ◽  
Neyaz Ahmad Sheikh

The main objective of this paper is to provide complete characterization of multigenerator Gabor frames on a periodic set $\Omega$ in $K$. In particular, we provide some necessary and sufficient conditions for the multigenerator Gabor system to be a frame for $L^2(\Omega)$. Furthermore, we establish the complete characterizations of multigenerator Parseval Gabor frames.


2021 ◽  
Vol 71 (6) ◽  
pp. 1375-1400
Author(s):  
Feyzi Başar ◽  
Hadi Roopaei

Abstract Let F denote the factorable matrix and X ∈ {ℓp , c 0, c, ℓ ∞}. In this study, we introduce the domains X(F) of the factorable matrix in the spaces X. Also, we give the bases and determine the alpha-, beta- and gamma-duals of the spaces X(F). We obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (ℓ p (F), ℓ ∞), (ℓ p (F), f) and (X, Y(F)) of matrix transformations, where Y denotes any given sequence space. Furthermore, we give the necessary and sufficient conditions for factorizing an operator based on the matrix F and derive two factorizations for the Cesàro and Hilbert matrices based on the Gamma matrix. Additionally, we investigate the norm of operators on the domain of the matrix F. Finally, we find the norm of Hilbert operators on some sequence spaces and deal with the lower bound of operators on the domain of the factorable matrix.


Sign in / Sign up

Export Citation Format

Share Document