scholarly journals Analysis & Designing of Multistorey Building with Steel Plate Shear Wall

Author(s):  
Md. Shahid Iqbal

Abstract: Structural design and analysis produces the capability of resisting all the applied loads without failure during its intended life. Lateral loads mainly due to earthquake govern the design of high-rise buildings. The interior structural system or exterior structural system provides the resistance to lateral loads in the structure. The present paper describes the analysis and design of high-rise buildings with Steel Plate Shear Wall (SPSW) for (G+20) stories. The properties of Steel plate shear wall system include the stiffness for control of structural displacement, ductile failure mechanism and high-energy absorption. The design and analysis of the composite building with steel plate shear wall is carried out using software ETABS. The present study is to carry out the response spectrum analysis of a high-rise composite building by optimizing the thickness of steel plate shear wall and to compare the results of displacement, story drift, overturning moment and story shear. The models are analyzed by Response Spectrum analysis as per IS 1893:2002. All structural members are designed as per IS 456:2002 & IS 800:2007 considering all load combinations. Keywords: Seismic; Composite; Shear Wall; Earthquake; Reinforced concrete.

Author(s):  
R. M. Phuke

The present study describes the analysis and design of high-rise steel building frame with and without Steel plate shear wall (SPSW). Further it is compared with moment resisting steel framed building and X-Braced steel framed building. For present work Response Spectrum Analysis is carried out for steel moment resisting frame building having G+19 storey situated in zone III. Modeling is done by using strip modeling. The analysis of steel plate shear wall and the building are carried out using software SAP2000 V15. The main parameter considered in this project is to compare the seismic performance of buildings i.e. lateral deflection. The models are analyzed by Response Spectrum analysis as per IS 1893:2002 and design has been carried out by using IS 800-2007.


2021 ◽  
Vol 11 (1) ◽  
pp. 6043-6063
Author(s):  
Ali Jafarian ◽  
Seyed Babak Jafarian

Considering the increase in the current construction process and the future needs of Iran, the necessity to use high-rise buildings for reduction in urbanization costs and optimal use of land will be inevitable in the future. The performance of steel plate shear wall system as a modern global system, which has an effective application in high-rise buildings and also brings economic benefits compared to previous systems, is evaluated in this study. Steel Plate Shear Walls (SPSW) are a new type of system resistant to wind and earthquake lateral loads, which dates back to the 1970s. In this research, eight samples of shear wall with various stiffening arrangements and sections with ST37 and ST52 alloys are modeled. To evaluate the nonlinear dynamic analysis, the samples are subjected to the San Fernando earthquake force and are modeled and analyzed by ABAQUS software based on the finite element theory. The results of analyzing the samples indicate better performance of the system with stiffener in both vertical and horizontal directions. Also, the use of sections with ST52 alloy has improved the performance of the shear wall by approximately 40%.


2013 ◽  
Vol 831 ◽  
pp. 149-152
Author(s):  
Kang Min Lee ◽  
Keun Yeong Oh ◽  
Rui Li ◽  
Liu Yi Chen ◽  
Woo Seok Kim

In the last several decades, coupled shear wall have become recognized as efficient lateral load resisting systems for high-rise structures, increasingly. Coupled shear walls give considerable lateral stiffness and strength as well as providing an architecturally practical structural system. In this paper, in order to observe seismic performance of coupled steel plate shear wall, models of previous study was verified, and coupled shear wall with steel plate was carried out with various parametric analysis. Parametric analysis was performed with various width of bay. As a result, model that aspect ratio of steel plate was close to 1 was the most structurally safe.


2012 ◽  
Vol 594-597 ◽  
pp. 860-868
Author(s):  
Kai Hu ◽  
Ge Qu

The most common analysis methods of complex high-rise buildings are the response spectrum analysis, elastic time history analysis, pushover analysis and etc. Meanwhile, for the analysis of those high-rises whose height is higher than 200 meters, period is longer than 4 seconds, the dynamic nonlinear analysis would be more accurate. In this paper, the dynamic nonlinear analysis was executed in use of the Perform-3D program. The results show that the maximum top displacement can meet the national codes; most tie beams and the frame beams of the upper structure yielded in the IO~IS stage and parts reached the CP stage; both the laminated columns and the frame columns had a good performance on the shear behavior; and it is also proposed to strengthen the reinforcement at the reducted storeys. By all these above, it can be judged that the structure reached the codes’ seismic performance objectives.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 3181-3189 ◽  
Author(s):  
Abhishek Verma ◽  
Dipti Ranjan Sahoo

2019 ◽  
Vol 180 ◽  
pp. 295-309 ◽  
Author(s):  
Kimleng Khy ◽  
Chatpan Chintanapakdee ◽  
Pennung Warnitchai ◽  
Anil C. Wijeyewickrema

2014 ◽  
Vol 638-640 ◽  
pp. 287-291
Author(s):  
Hai Xia Zhang ◽  
Qi Peng ◽  
Li Xuan Zhao

Shear wall is the main component that resists the lateral force for high-rise buildings. With the rapid development of high-rise buildings, especially the super high-rise buildings, requirements for seismic performance of shear walls have become more sophisticated. This introduction summarizes the commonly used in embedded development and existing problems of steel plate shear wall, which are stiffened steel plate shear wall, non-stiffened steel plate shear wall, composite steel plate shear wall, preventing buckling of steel plate shear wall and low yield point steel plate shear wall.


2014 ◽  
Vol 501-504 ◽  
pp. 690-694
Author(s):  
He Sheng Tang ◽  
Wen Yao ◽  
Li Xin Deng ◽  
Yu Su ◽  
Jiao Wang

This study presents an evidential uncertainty quantification (UQ) approach for dynamic response spectrum analysis of a structural system with epistemic uncertainty. The present method is performed using an evidence theory to quantify the uncertainty present in the structures parameters such as material properties. In order to alleviate the computational difficulties in the evidence theory based UQ analysis, a differential evolution (DE) based interval optimization for computing bounds method is developed. With comparison of probability theory and interval method, the computational efficiency and accuracy of this approach method are also investigated.


Author(s):  
Varun Mahajan

Abstract: Architects nowadays develop attractive edifices, and floating columns are widely employed in this process. Floating columns are used not only to provide a magnificent perspective but also when a vast open area is necessary. Edifices with irregular configurations are more vulnerable to earthquakes and hence, suitable shear wall placement is required to ensure the edifice's stability. Many multi-storey edifices collapsed in seconds after the Bhuj Earthquake (Jan 26, 2001), due to the presence of soft stories, floating columns, and mass anomalies. As a result, knowing the seismic reactions of these buildings are vital for constructing earthquake-resistant assemblies. The relevance of a Floating Column and the existence of a shear wall in an irregular multistorey building is highlighted in this study. Dynamic seismic behaviour of a G+18 irregular edifice with different locations of the floating column and different positions of the shear wall is explored in this research. The edifice is analysed and compared with the model without shear walls and floating columns to examine the alterations. The dynamic analysis is carried out using Response Spectrum Analysis and storey drift, storey displacement and base shear are calculated and finally, software compression is computed for different zones. The analysis is carried out by Indian standardized codes IS 1893:2016 and IS 456:2000 which are the codes specified by the Bureau of Indian Standards for earthquake resistance edifice design and plain and reinforcement concrete design respectively. Keywords: Floating Column, Shear Wall, Irregular Edifice, Seismic behaviour, Response Spectrum Analysis, storey drift, storey displacement, base shear.


Sign in / Sign up

Export Citation Format

Share Document