Antares, the first undersea neutrino telescope, has been continuously operating since 2007 in the Mediterranean Sea. The transparency of the water allows for a very good angular resolution in the reconstruction of neutrino events of all flavors. This results in an unmatched sensitivity for neutrino source searches, in a large fraction of the Southern Sky, at TeV energies. As a consequence, Antares provides valuable constraints on the origin of the cosmic neutrino flux discovered by the IceCube Collaboration. Based on an all-flavor dataset spanning nine years of operation of the detector, the latest results of Antares searches for neutrino point sources, and for diffuse neutrino emission from the entire sky as well as from several interesting regions such as the Galactic Plane, are presented. Several results have been obtained through a joint analysis with the IceCube Collaboration. Concerning the multi-messenger program, the focus is made on the follow-up searches of IceCube alerts, in particular the one related to the TXS 0506+056 blazar, thought to be the first extragalactic high-energy neutrino source identified so far.