scholarly journals Some identities and recurrence relations on the two variables Bernoulli, Euler and Genocchi polynomials

Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1757-1765
Author(s):  
Veli Kurt ◽  
Burak Kurt

Mahmudov in ([16], [17], [18]) introduced and investigated some q-extensions of the q-Bernoulli polynomials B(?)n,q (x,y) of order ?, the q-Euler polynomials ?(?)n,q (x,y) of order ? and the q-Genocchi polynomials G(?)n,q (x,y) of order ?. In this article, we give some identities for the q-Bernoulli polynomials, q-Euler polynomials and q-Genocchi polynomials and the recurrence relation between these polynomials. We give a different form of the analogue of the Srivastava-Pint?r addition theorem.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Daeyeoul Kim ◽  
Burak Kurt ◽  
Veli Kurt

Mahmudov (2012, 2013) introduced and investigated someq-extensions of theq-Bernoulli polynomialsℬn,qαx,yof orderα, theq-Euler polynomialsℰn,qαx,yof orderα, and theq-Genocchi polynomials𝒢n,qαx,yof orderα. In this paper, we give some identities forℬn,qαx,y,𝒢n,qαx,y, andℰn,qαx,yand the recurrence relations between these polynomials. This is an analogous result to theq-extension of the Srivastava-Pintér addition theorem in Mahmudov (2013).


Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 3085-3121
Author(s):  
H.M. Srivastava ◽  
B.Y. Yaşar ◽  
M.A. Özarslan

In the present paper, we introduce and investigate the big (p,q)-Appell polynomials. We prove an equivalance theorem satisfied by the big (p, q)-Appell polynomials. As a special case of the big (p,q)- Appell polynomials, we present the corresponding equivalence theorem, recurrence relation and difference equation for the big q-Appell polynomials. We also present the equivalence theorem, recurrence relation and differential equation for the usual Appell polynomials. Moreover, for the big (p; q)-Bernoulli polynomials and the big (p; q)-Euler polynomials, we obtain recurrence relations and difference equations. In the special case when p = 1, we obtain recurrence relations and difference equations which are satisfied by the big q-Bernoulli polynomials and the big q-Euler polynomials. In the case when p = 1 and q ? 1-, the big (p,q)-Appell polynomials reduce to the usual Appell polynomials. Therefore, the recurrence relation and the difference equation obtained for the big (p; q)-Appell polynomials coincide with the recurrence relation and differential equation satisfied by the usual Appell polynomials. In the last section, we have chosen to also point out some obvious connections between the (p; q)-analysis and the classical q-analysis, which would show rather clearly that, in most cases, the transition from a known q-result to the corresponding (p,q)-result is fairly straightforward.


Author(s):  
Waseem Khan ◽  
Idrees Ahmad Khan ◽  
Mehmet Acikgoz ◽  
Ugur Duran

In this paper, a new class of q-Hermite based Frobenius type Eulerian polynomials is introduced by means of generating function and series representation. Several fundamental formulas and recurrence relations for these polynomials are derived via different generating methods. Furthermore, diverse correlations including the q-Apostol-Bernoulli polynomials, the q-Apostol-Euler poynoomials, the q-Apostol-Genocchi polynomials and the q-Stirling numbers of the second kind are also established by means of the their generating functions.


Filomat ◽  
2016 ◽  
Vol 30 (4) ◽  
pp. 929-935 ◽  
Author(s):  
Veli Kurt

In last last decade, many mathematicians studied the unification of the Bernoulli and Euler polynomials. Firstly Karande B. K. and Thakare N. K. in [6] introduced and generalized the multiplication formula. Ozden et. al. in [14] defined the unified Apostol-Bernoulli, Euler and Genocchi polynomials and proved some relations. M. A. Ozarslan in [13] proved the explicit relations, symmetry identities and multiplication formula. El-Desouky et. al. in ([3], [4]) defined a new unified family of the generalized Apostol-Euler, Apostol-Bernoulli and Apostol-Genocchi polynomials and gave some relations for the unification of multiparameter Apostol-type polynomials and numbers. In this study, we give some symmetry identities and recurrence relations for the unified Apostol-type polynomials related to multiple alternating sums.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
R. Tremblay ◽  
S. Gaboury ◽  
B.-J. Fugère

The main object of this paper is to introduce and investigate two new classes of generalized Apostol-Euler and Apostol-Genocchi polynomials. In particular, we obtain a new addition formula for the new class of the generalized Apostol-Euler polynomials. We also give an extension and some analogues of the Srivastava-Pintér addition theorem obtained in the works by Srivastava and Pintér (2004) and R. Tremblay, S. Gaboury, B.-J. Fugère, and Tremblay et al. (2011). for both classes.


Filomat ◽  
2014 ◽  
Vol 28 (4) ◽  
pp. 695-708 ◽  
Author(s):  
H.M. Srivastava ◽  
M.A. Özarslan ◽  
Banu Yılmaz

Recently, Khan et al. [S. Khan, G. Yasmin, R. Khan and N. A. M. Hassan, Hermite-based Appell polynomials: Properties and Applications, J. Math. Anal. Appl. 351 (2009), 756-764] defined the Hermite-based Appell polynomials by G(x, y, z, t) := A(t)?exp(xt + yt2 + zt3) = ??,n=0 HAn(x, y, z) tn/n! and investigated their many interesting properties and characteristics by using operational techniques combined with the principle of monomiality. Here, in this paper, we find the differential, integro-differential and partial differential equations for the Hermite-based Appell polynomials via the factorization method. Furthermore, we derive the corresponding equations for the Hermite-based Bernoulli polynomials and the Hermite-based Euler polynomials. We also indicate how to deduce the corresponding results for the Hermite-based Genocchi polynomials from those involving the Hermite-based Euler polynomials.


2020 ◽  
Vol 13 (3) ◽  
pp. 444-458
Author(s):  
Roberto Bagsarsa Corcino ◽  
Mark Laurente ◽  
Mary Ann Ritzell Vega

Most identities of Genocchi numbers and polynomials are related to the well-knownBenoulli and Euler polynomials. In this paper, multi poly-Genocchi polynomials withparameters a, b and c are dened by means of multiple parameters polylogarithm. Several properties of these polynomials are established including some recurrence relations and explicit formulas.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 431 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we introduce the two-variable truncated Fubini polynomials and numbers and then investigate many relations and formulas for these polynomials and numbers, including summation formulas, recurrence relations, and the derivative property. We also give some formulas related to the truncated Stirling numbers of the second kind and Apostol-type Stirling numbers of the second kind. Moreover, we derive multifarious correlations associated with the truncated Euler polynomials and truncated Bernoulli polynomials.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 329 ◽  
Author(s):  
Yuan He ◽  
Serkan Araci ◽  
Hari Srivastava ◽  
Mahmoud Abdel-Aty

In this paper, we present a systematic and unified investigation for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the Apostol-Genocchi polynomials. By applying the generating-function methods and summation-transform techniques, we establish some higher-order convolutions for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the Apostol-Genocchi polynomials. Some results presented here are the corresponding extensions of several known formulas.


Sign in / Sign up

Export Citation Format

Share Document