Some new generalizations for GA-convex functions

Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 1009-1016 ◽  
Author(s):  
Ahmet Akdemir ◽  
Özdemir Emin ◽  
Ardıç Avcı ◽  
Abdullatif Yalçın

In this paper, firstly we prove an integral identity that one can derive several new equalities for special selections of n from this identity: Secondly, we established more general integral inequalities for functions whose second derivatives of absolute values are GA-convex functions based on this equality.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yi-Xia Li ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Mujahid Abbas ◽  
Yu-Ming Chu

AbstractIn this paper, we offer a new quantum integral identity, the result is then used to obtain some new estimates of Hermite–Hadamard inequalities for quantum integrals. The results presented in this paper are generalizations of the comparable results in the literature on Hermite–Hadamard inequalities. Several inequalities, such as the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint–trapezoid-like integral inequality, and the trapezoid-like integral inequality, are obtained as special cases of our main results.


2016 ◽  
Vol 4 (3) ◽  
pp. 73-73
Author(s):  
Imdat Iscan ◽  
Mustafa Aydin

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huriye Kadakal

In this study, firstly we introduce a new concept called “strongly r-convex function.” After that we establish Hermite-Hadamard-like inequalities for this class of functions. Moreover, by using an integral identity together with some well known integral inequalities, we establish several new inequalities for n-times differentiable strongly r-convex functions. In special cases, the results obtained coincide with the well-known results in the literature.


Filomat ◽  
2017 ◽  
Vol 31 (14) ◽  
pp. 4415-4420 ◽  
Author(s):  
Erhan Set ◽  
Ahmet Akdemir ◽  
Emin Özdemir

In this paper some new inequalities of Simpson-type are established for the classes of functions whose derivatives of absolute values are convex functions via Riemann-Liouville integrals. Also, by special selections of n, we give some reduced results.


2014 ◽  
Vol 246 ◽  
pp. 306-315 ◽  
Author(s):  
İmdat İşcan ◽  
Erhan Set ◽  
M. Emin Özdemir

Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 183 ◽  
Author(s):  
Seth Kermausuor ◽  
Eze Nwaeze ◽  
Ana Tameru

In this paper, we introduced some new integral inequalities of the Hermite–Hadamard type for functions whose second derivatives in absolute values at certain powers are strongly η -convex functions via the Katugampola fractional integrals.


Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
George Anastassiou

AbstractHere we present vectorial general integral inequalities involving products of multivariate convex and increasing functions applied to vectors of functions. As specific applications we derive a wide range of vectorial fractional inequalities of Hardy type. These involve the left and right: Erdélyi-Kober fractional integrals, mixed Riemann-Liouville fractional multiple integrals. Next we produce multivariate Poincaré type vectorial fractional inequalities involving left fractional radial derivatives of Canavati type, Riemann-Liouville and Caputo types. The exposed inequalities are of L p type, p ≥ 1, and exponential type.


Sign in / Sign up

Export Citation Format

Share Document