scholarly journals Counting fuzzy subgroups of some finite groups by a new equivalence relation

Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6151-6160
Author(s):  
Ardekani Kamali

The study concerning the classification of the fuzzy subgroups of finite groups is a significant aspect of fuzzy group theory. In early papers, the number of distinct fuzzy subgroups of some nonabelian groups is calculated by the natural equivalence relation. In this paper, we treat to classifying fuzzy subgroups of some groups by a new equivalence relation which has a consistent group theoretical foundation. In fact, we determine exact number of fuzzy subgroups of finite non-abelian groups of order p3 and special classes of dihedral groups.

2019 ◽  
Vol 17 (1) ◽  
pp. 1303-1309 ◽  
Author(s):  
Ghulam Abbas ◽  
Usman Ali ◽  
Mobeen Munir ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Shin Min Kang

Abstract Classical applications of resolving sets and metric dimension can be observed in robot navigation, networking and pharmacy. In the present article, a formula for computing the metric dimension of a simple graph wihtout singleton twins is given. A sufficient condition for the graph to have the exchange property for resolving sets is found. Consequently, every minimal resolving set in the graph forms a basis for a matriod in the context of independence defined by Boutin [Determining sets, resolving set and the exchange property, Graphs Combin., 2009, 25, 789-806]. Also, a new way to define a matroid on finite ground is deduced. It is proved that the matroid is strongly base orderable and hence satisfies the conjecture of White [An unique exchange property for bases, Linear Algebra Appl., 1980, 31, 81-91]. As an application, it is shown that the power graphs of some finite groups can define a matroid. Moreover, we also compute the metric dimension of the power graphs of dihedral groups.


1972 ◽  
Vol 24 (3) ◽  
pp. 426-431 ◽  
Author(s):  
J. P. E. Hodgson

Let Mm be a closed PL manifold of dimension m. Then a concordance between two PL-homeomorphisms h0, h1:M → M is a PL-homeomorphismH: M × I → M × I such that H|M × 0 = h0 and H|M × 1 = h. Concordance is an equivalence relation and in his paper [2], M. Kato classifies PL-homeomorphisms of Sp × Sq up to concordance. To do this he treats first the problem of classifying those homeomorphisms that induce the identity in homology, and then describes the automorphisms of the cohomology ring that can arise from homeomorphisms of Sp × Sq. In this paper we show that for sufficiently connected PL-manifolds that embed in codimension 1, one can extend Kato's classification of the homeomorphisms that induce the identity in homology.


Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


2019 ◽  
Vol 22 (1) ◽  
pp. 137-156
Author(s):  
Zeinab Foruzanfar ◽  
İsmai̇l Ş. Güloğlu ◽  
Mehdi Rezaei

Abstract In this paper, we classify all finite groups satisfying the following property: their conjugacy class lengths are set-wise relatively prime for any six distinct classes.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 59-65
Author(s):  
Rabiha Mahmoud ◽  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Let G be a dihedral group and its conjugacy class graph. The Laplacian energy of the graph, is defined as the sum of the absolute values of the difference between the Laplacian eigenvalues and the ratio of twice the edges number divided by the vertices number. In this research, the Laplacian matrices of the conjugacy class graph of some dihedral groups, generalized quaternion groups, quasidihedral groups and their eigenvalues are first computed. Then, the Laplacian energy of the graphs are determined.


Sign in / Sign up

Export Citation Format

Share Document