scholarly journals The effect of wheat-rye translocation 1BL.1RS in a different quality genetic background on biological traits in wheat

Genetika ◽  
2008 ◽  
Vol 40 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Miodrag Dimitrijevic ◽  
Sofija Petrovic ◽  
Perry Gustafson

A sample of 139 varieties of common wheat (Triticum aestivum L.), predominantly Serbian winter wheat varieties originated in the Institute of Field and Vegetable Crops in Novi Sad, has been examined for presence of 1BL/1RS wheat-rye translocation. Two genotype groups consisted of varieties possessing and lacking the translocation have been compared. Stem rust, leaf rust, powdery mildew as well as, winter hardiness were studied. The influence of 1BL/1RS translocation was also studied in a light of wheat seed storage protein (glutenin and gliadin) genetic background composition. Genotypes having the translocation appeared to be more tolerant to stem rust, and leaf rust, but more susceptible to powdery mildew. These effects were slightly modified depending on the examined genetic background, but the effect of the rye 1RS translocated chromosome arm was the main cause for the observed differences.

2004 ◽  
Vol 84 (4) ◽  
pp. 1015-1023 ◽  
Author(s):  
H. J. Li ◽  
R. L. Conner ◽  
B. D. McCallum ◽  
X. M. Chen ◽  
H. Su ◽  
...  

The hard red winter wheat Tangmai 4 did not develop symptoms of infection following inoculation with powdery mildew (Erysiphe graminis DC. f. sp. tritici E. Marchal) isolates from regions of western Canada and northern China. Tangmai 4 exhibited resistance to stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & Henn.) and leaf rust (P. triticina Eriks.) races from western Canada. This wheat line was resistant to individual stripe rust (P. striiformis Westend. f. sp. tritici Eriks.) races from the U.S. and Canada. Sequential C-banding and genomic in situ hybridization (GISH), and electrophoretic analyses of high molecular weight glutenins and gliadins demonstrated that Tangmai 4 carried a pair of T1BL·1RS wheat-rye (Secale cereale L.) translocated chromosomes. Since the genes located on T1BL·1RS are no longer effective in controlling powdery mildew and the rust diseases, Tangmai 4 must carry additional genes for resistance to these diseases, which makes it a valuable resource for the improvement of resistance in wheat against these diseases. Key words: T1BL·1RS translocation, disease resistance, sequential C-banding and GISH, glutenin, gliadin


Genome ◽  
1987 ◽  
Vol 29 (3) ◽  
pp. 467-469 ◽  
Author(s):  
P. L. Dyck

Backcross lines of gene LrT2 for resistance to leaf rust in the common wheat (Triticum aestivum L.) 'Thatcher' unexpectedly show improved resistance to stem rust compared with that of the recurrent parent. Genetic–cytogenetic evidence indicates that LrT2 is on chromosome 7D, which is known to carry the "suppressor" gene(s) that prevent the expression of stem rust resistance conferred by other genes in 'Canthatch'. Thus, LrT2 may be a nonsuppressing allele of the suppressor gene(s) or be closely linked to such an allele. LrT2 has been designated Lr34. Key words: Triticum, wheat, rust resistance.


2011 ◽  
Vol 59 (3) ◽  
pp. 241-248 ◽  
Author(s):  
G. Vida ◽  
M. Cséplő ◽  
G. Gulyás ◽  
I. Karsai ◽  
T. Kiss ◽  
...  

Among the factors which determine yield reliability an important role is played by disease resistance. One of the breeding aims in the Martonvásár institute is to develop wheat varieties with resistance to major diseases. The winter wheat varieties bred in Martonvásár are examined in artificially inoculated nurseries and greenhouses for resistance to economically important pathogens. The effectiveness of designated genes for resistance to powdery mildew and leaf rust has been monitored over a period of several decades. None of the designated major resistance genes examined in greenhouse tests is able to provide complete resistance to powdery mildew; however, a number of leaf rust resistance genes provide full protection against pathogen attack (Lr9, Lr19, Lr24, Lr25, Lr28 and Lr35). In the course of marker-assisted selection, efficient resistance genes (Lr9, Lr24, Lr25 and Lr29) have been incorporated into Martonvásár wheat varieties. The presence of Lr1, Lr10, Lr26, Lr34 and Lr37 in the Martonvásár gene pool was identified using molecular markers. New sources carrying alien genetic material have been tested for powdery mildew and leaf rust resistance. Valuable Fusarium head blight resistance sources have been identified in populations of old Hungarian wheat varieties. Species causing leaf spots (Pyrenophora tritici-repentis, Septoria tritici and Stagonospora nodorum) have gradually become more frequent over the last two decades. Tests on the resistance of the host plant were begun in Martonvásár four years ago and regular greenhouse tests on seedlings have also been initiated.


1985 ◽  
Vol 33 (2) ◽  
pp. 133-153 ◽  
Author(s):  
Jan Valkoun ◽  
Karl Hammer ◽  
Dagmar Kučerová ◽  
Pavel Bartoš

1960 ◽  
Vol 38 (1) ◽  
pp. 1-7 ◽  
Author(s):  
D. J. Samborski ◽  
Clayton Person ◽  
F. R. Forsyth

The effect of maleic hydrazide on leaf rust and stem rust of wheat was investigated, using intact plants supplied with maleic hydrazide through the roots, detached leaves floated on solutions of maleic hydrazide, and spores germinated on maleic hydrazide solutions in agar. In each case the growth of leaf rust was inhibited at concentrations of maleic hydrazide which had no effect on the growth of stem rust. Some resistant wheat varieties became susceptible to rust after treatments with levels of maleic hydrazide which were not inhibitory to rust development. In some experiments, leaf rust races reacted differentially to maleic hydrazide. Both nutritional and inhibitory factors could be involved in resistance and host–pathogen specificity.


2011 ◽  
Vol 123 (4) ◽  
pp. 615-623 ◽  
Author(s):  
R. Mago ◽  
L. Tabe ◽  
R. A. McIntosh ◽  
Z. Pretorius ◽  
R. Kota ◽  
...  

2017 ◽  
Vol 6 (3) ◽  
pp. 41-45
Author(s):  
Teklay A. Teferi ◽  
Muruts L. Wubshet

Barley is attacked by many diseases and hence, the study was conducted to quantify and profile barley affecting diseases for management options. The survey was based on the assessment of barley fields at 5 km interval. Results indicated that powdery mildew, leaf rust, stem rust, leaf scald, and smuts were among the important diseases in south Tigray. The prevalence of the former diseases was 60, 60, 40, 47.8, and 40%, respectively. The incidence of powdery mildew, scaled, leaf rust and stem rust was 100% in considerable fields and cultivars. The incidence of smuts was ranged from 5% to 30%. Similarly, the mean severities of powdery mildew, leaf rust, stem rust and leaf scald were 43.4, 54.5, 45 and 20%, respectively, while, smuts caused complete spike losses.  Therefore, investigating of the pathogens variability especially for rusts, powdery mildew and scald as well as developing integrated management options for all diseases is of concern.


Sign in / Sign up

Export Citation Format

Share Document