Numerical simulation and circuit network modelling of flow distributions in 2-D array configurations
Packing configuration is widely used in chemical industries such as chemical re-action and chromatograph where the flow distribution has a significant effect on the performance of heat and mass transfer. In the present paper, numerical simulation is carried out to investigate the fluid-flow in three 2-D array configurations including in-line array, staggered array and hexagonal array. Meanwhile, a simplified equivalent circuit network model based on the Voronoi tessellation is proposed to simulate the flow models. It is found that firstly, the local Reynolds number could be used as a criterion to determine the flow regime. Flow with maximum local Reynolds number less than 40 could be regarded as Darcy flow. Secondly, the flow pattern can be well represented by the network model in the range of Darcy flow with the determination method of hydraulic resistance pro-posed in the present paper.