Cellular Defense of the Avian Respiratory System: Dose-Response Relationship and Duration of Response in Intratracheal Stimulation of Avian Respiratory Phagocytes by a Pasteurella multocida Bacterin

1993 ◽  
Vol 37 (3) ◽  
pp. 756 ◽  
Author(s):  
Thomas E. Toth ◽  
P. B. Siegel
1992 ◽  
Vol 262 (5) ◽  
pp. L574-L581 ◽  
Author(s):  
W. E. Finkbeiner ◽  
J. H. Widdicombe ◽  
L. Hu ◽  
C. B. Basbaum

The role of adenosine 3',5'-cyclic monophosphate (cAMP) and protein phosphorylation during beta-adrenergic receptor stimulation of bovine tracheal gland serous cells was investigated in vitro. Isoproterenol, a beta-adrenergic agonist, increased the secretion of 35S-labeled molecules. Intracellular cAMP levels were increased within 1 min after stimulation of bovine tracheal gland serous cells with isoproterenol. The dose-response relationship for isoproterenol-stimulated generation of cAMP correlated with the dose-response relationship for isoproterenol-stimulated secretion of 35S-labeled molecules. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine potentiated both isoproterenol-evoked secretion of 35S-labeled molecules and the production of intracellular cAMP, and the beta-adrenergic receptor antagonist propranolol completely blocked both effects. The secretory response of the cells to isoproterenol could be mimicked by the cAMP analogues 8-bromoadenosine 3',5'-cyclic monophosphate and dibutyryl adenosine 3',5'-cyclic monophosphate. Activity of cAMP-dependent kinase was measured in soluble and particulate cell extracts. cAMP effected the state of phosphorylation of proteins associated with the soluble but not the particulate fraction. These studies are consistent with the hypothesis that beta-adrenergic stimulation of secretion from bovine tracheal gland serous cells occurs via a cAMP-mediated pathway and that one of the molecular events in this pathway is cAMP-dependent protein phosphorylation.


1987 ◽  
Vol 64 (2) ◽  
pp. 433-443 ◽  
Author(s):  
Terry D. Etherton ◽  
James P. Wiggins ◽  
Christina M. Evock ◽  
Chung S. Chung ◽  
John F. Rebhun ◽  
...  

1962 ◽  
Vol 41 (2) ◽  
pp. 268-273 ◽  
Author(s):  
Ralph I. Dorfman

ABSTRACT The stimulating action of testosterone on the chick's comb can be inhibited by the subcutaneous injection of 0.1 mg of norethisterone or Ro 2-7239 (2-acetyl-7-oxo-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodecahydrophenanthrene), 0.5 mg of cortisol or progesterone, and by 4.5 mg of Mer-25 (1-(p-2-diethylaminoethoxyphenyl)-1-phenyl-2-p-methoxyphenyl ethanol). No dose response relationship could be established. Norethisterone was the most active anti-androgen by this test.


2021 ◽  
Vol 34 (01) ◽  
pp. 003-016
Author(s):  
John Michel Warner

AbstractAccording to Hahnemann, homoeopathic medicines must be great immune responses inducers. In crude states, these medicines pose severe threats to the immune system. So, the immune-system of an organism backfires against the molecules of the medicinal substances. The complex immune response mechanism activated by the medicinal molecules can handle any threats which are similar to the threats posed by the medicinal molecules. The intersectional operation of the two sets, medicine-induced immune responses and immune responses necessary to cure diseases, shows that any effective homoeopathic medicine, which is effective against any disease, can induce immune responses which are necessary to cure the specific disease. In this article, this mechanism has been exemplified by the action of Silicea in human body. Also, a neuroimmunological assessment of the route of medicine administration shows that the oral cavity and the nasal cavity are two administration-routes where the smallest doses (sometimes even few molecules) of a particular homoeopathic medicine induce the most effective and sufficient (in amount) purgatory immune responses. Administering the smallest unitary doses of Silicea in the oral route can make significant changes in the vital force line on the dose–response relationship graph. The dose–response relationship graph further implicates that the most effective dose of a medicine must be below the lethality threshold. If multiple doses of any medicine are administered at same intervals, the immune-system primarily engages with the medicinal molecules; but along the passage of time, the engagement line splits into two: one engages with the medicinal molecules and another engages with diseases. The immune system's engagement with the diseases increases along the passage of time, though the engagement with the medicinal molecules gradually falls with the administration of descending doses. Necessarily, I have shown through mathematical logic that the descending doses, though they seem to be funny, can effectively induce the most effective immune responses.


Sign in / Sign up

Export Citation Format

Share Document