A complete, decidable theory with two decidable models

1979 ◽  
Vol 44 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Terrence S. Millar

A well-known result of Vaught's is that no complete theory has exactly two nonisomorphic countable models. The main result of this paper is that there is a complete decidable theory with exactly two nonisomorphic decidable models.A model is decidable if it has a decidable satisfaction predicate. To be more precise, let T be a decidable theory, let {θn∣n < ω} be an effective enumeration of all formulas in L(T), and let be a countable model of T. For any indexing E = {ai∣ i < ω} of ∣∣, and any formula ϕ ∈ L(T), let ‘ϕE’ denote the result of substituting ‘ai’ for every free occurrence of ‘xi’ in ϕ, i < ω. Then is decidable just in case, for some indexing E of ∣∣, {n ∣ ⊨ θnE} is a recursive set of integers. It is easy to show that the decidability of a model does not depend on the choice of the effective enumeration of the formulas in L(T); we omit details. By a simple ‘effectivization’ of Henkin's proof of the completeness theorem (see Chang [1]) we haveFact 1. Every decidable consistent theory has a decidable model.Assume next that T is a complete decidable theory and {θn ∣ n < ω} is an effective enumeration of all formulas of L(T).

1977 ◽  
Vol 42 (1) ◽  
pp. 29-32
Author(s):  
Ernest Snapper

The purpose of this paper is to introduce the notion of “omitting models” and to derive a very natural theorem concerning it (Theorem 1). A corollary of this theorem is the remarkable theorem of Vaught [3] which states that a countable complete theory cannot have precisely two nonisomorphic countable models. In fact, we show that our theorem implies Rosenstein's theorem [2] which, in turn, implies Vaught's theorem.T stands for a countable complete theory whose (countable) language is denoted by L. Following [1], a countably homogeneous model of T is a countable model of T with the property that, for any two n-tuples a1, …, an and b1,…,bn of the universe of whose types are the same, there is an automorphism of which maps ai, on bi, for i = 1, …, n [1, p. 129 and Proposition 3.2.9, p. 131]. “Homogeneous model” always means “countably homogeneous model.” “Type of T” always stands for “n-type of T” where n ≥ s 0, i.e., for the type of some n-tuple of individuals of the universe of some model of T. We often use that two homogeneous models which realize the same types are isomorphic [1, Proposition 3.2.9, p. 131].It is well known that every type of T is realized by at least one countable model of T. The main definition of this paper is:Definition 1. A set of countable models of T is omissible or “may be omitted” if every type of T is realized by at least one countable model of T which is not isomorphic to a model in the set.The main theorem of the paper is:Theorem 1. If a countable complete theory is not ω-categorical, every finite set of its homogeneous models may be omitted.The theorem is proved in §1 and in §2 it is shown how Vaught's and Rosenstein's theorems follow from it. §3 discusses some general aspects of omitting models.


1981 ◽  
Vol 46 (2) ◽  
pp. 397-411 ◽  
Author(s):  
Terrence Millar

In this paper we investigate the relationship between the number of countable and decidable models of a complete theory. The number of decidable models will be determined in two ways, in §1 with respect to abstract isomorphism type, and in §2 with respect to recursive isomorphism type.Definition 1. A complete theory is (α, β) if the number of countable models of T, up to abstract isomorphism, is β, and similarly the number of decidable models of T is α.Definition 2. A model is ω-decidable if ∣∣= ω and for an effective listing {θn∣n < ω} of all sentences in the language of Th() augmented by new constant symbols i*, i < ω, {n ∣〈, i〉i<ω ⊨ θn} is recursive, where i interprets i* (in these terms, is decidable if is abstractly isomorphic to an ω-decidable model).Definition 3. A complete theory is (α, β)r if it is (γ, β) for some γ and it has exactly αω-decidable models up to recursive isomorphism.Specifically we will show in §1 that there is a (2, ω) theory, and in §2 that although there is a (2, 2ω) theory, there is no (2, β)r theory for any β, β < 2ω.


1983 ◽  
Vol 48 (1) ◽  
pp. 21-32 ◽  
Author(s):  
H. A. Kierstead ◽  
J. B. Remmel

Ehrenfeucht and Mostowski [3] introduced the notion of indiscernibles and proved that every first order theory has a model with an infinite set of order indiscernibles. Since their work, techniques involving indiscernibles have proved to be extremely useful for constructing models with various specialized properties. In this paper and in a sequel [5], we investigate the effective content of Ehrenfeucht's and Mostowski's result. In this paper we consider the question of which decidable theories have decidable models with infinite recursive sets of indiscernibles. In §1, using some basic facts from stability theory, we show that certain large classes of decidable theories have decidable models with infinite recursive sets of indiscernibles. For example, we show that every ω-stable decidable theory and every stable theory which possesses a certain strong decidability property called ∃Q-decidability have such models. In §2 we construct several examples of decidable theories which have no decidable models with infinite recursive sets of indiscernibles. These examples show that our hypothesis for our positive results in §1 are necessary. Finally in §3 we give two applications of our results. First as an easy application of our results in §1, we show that every ω-stable decidable theory has uncountable models which realize only recursive types. Also our counterexamples in §2 allow us to answer negatively two questions of Baldwin and Kueker [1] concerning the effectiveness of their elimination of Ramsey quantifiers for certain theories.In [5], we show that in general the problem of finding an infinite set of indiscernibles in a decidable model is recursively equivalent to finding a path through a recursive infinite branching tree. Similarly, we show that the problem of finding an co-type of a set of indiscernibles in a decidable ω-categorical theory is recursively equivalent to finding a path through a highly recursive finitely branching tree.


2019 ◽  
Vol 84 (3) ◽  
pp. 1007-1019
Author(s):  
DANUL K. GUNATILLEKA

AbstractWe continue the study of the theories of Baldwin–Shi hypergraphs from [5]. Restricting our attention to when the rank δ is rational valued, we show that each countable model of the theory of a given Baldwin–Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of the original class used in the construction. We introduce a notion of dimension for a model and show that there is a an elementary chain $\left\{ {\mathfrak{M}_\beta :\beta \leqslant \omega } \right\}$ of countable models of the theory of a fixed Baldwin–Shi hypergraph with $\mathfrak{M}_\beta \preccurlyeq \mathfrak{M}_\gamma $ if and only if the dimension of $\mathfrak{M}_\beta $ is at most the dimension of $\mathfrak{M}_\gamma $ and that each countable model is isomorphic to some $\mathfrak{M}_\beta $. We also study the regular types that appear in these theories and show that the dimension of a model is determined by a particular regular type. Further, drawing on a large body of work, we use these structures to give an example of a pseudofinite, ω-stable theory with a nonlocally modular regular type, answering a question of Pillay in [11].


1985 ◽  
Vol 50 (4) ◽  
pp. 973-982 ◽  
Author(s):  
Daniel Lascar

§I. In 1961, R. L. Vaught ([V]) asked if one could prove, without the continuum hypothesis, that there exists a countable complete theory with exactly ℵ1 isomorphism types of countable models. The following statement is known as Vaught conjecture:Let T be a countable theory. If T has uncountably many countable models, then T hascountable models.More than twenty years later, this question is still open. Many papers have been written on the question: see for example [HM], [M1], [M2] and [St]. In the opinion of many people, it is a major problem in model theory.Of course, I cannot say what Vaught had in mind when he asked the question. I just want to explain here what meaning I personally see to this problem. In particular, I will not speak about the topological Vaught conjecture, which is quite another issue.I suppose that the first question I shall have to face is the following: “Why on earth are you interested in the number of countable models—particularly since the whole question disappears if we assume the continuum hypothesis?” The answer is simply that I am not interested in the number of countable models, nor in the number of models in any cardinality, as a matter of fact. An explanation is due here; it will be a little technical and it will rest upon two names: Scott (sentences) and Morley (theorem).


1979 ◽  
Vol 44 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Manuel Lerman ◽  
James H. Schmerl

A structure is recursive if the set of quantifier-free sentences in the complete diagram ⊿() of is recursive. It has been known for some time that every decidable theory has a recursive model. In fact, every decidable theory has a decidable model (that is a model such that ⊿() is recursive). In this paper we find other conditions which imply that a theory have a recursive model.In §1 we study the relation between an ℵ0-categorical theory T having a recursive model and the complexity of the quantificational hierarchy of that theory. We let ∃0 denote the set of quantifier-free sentences, and let ∃n÷1 denote the set of sentences beginning with an existential quantifier and having n alternations of quantifiers. (∀n is defined analogously.) Then we show that if T is an arithmetical ℵ0-categorical theory such that T ⋂ ∃n÷2 is Σn÷10 for each n < ω, then T has a recursive model. We show that this is a best possible result by giving an example of a ⊿n÷20 ℵ0-categorical theory T such that T ⋂ ∃n÷1 is recursive yet T has no recursive model.In §2 we consider the theory of trees. Ershov [1] had proved that every Σ10 theory of trees has a recursive model. We show this to be best possible by giving an example of a ⊿20 theory of trees which has no recursive model.


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.


1981 ◽  
Vol 20 (1) ◽  
pp. 48-65
Author(s):  
T. G. Mustafin

1986 ◽  
Vol 51 (4) ◽  
pp. 1043-1055 ◽  
Author(s):  
Terry Millar

This paper contains an example of a decidable theory which has1) only a countable number of countable models (up to isomorphism);2) a decidable saturated model; and3) a countable homogeneous model that is not decidable.By the results in [1] and [2], this can happen if and only if the set of types realized by the homogeneous model (the type spectrum of the model) is not .If Γ and Σ are types of a theory T, define Γ ◁ Σ to mean that any model of T realizing Γ must realize Σ. In [3] a decidable theory is constructed that has only countably many countable models, only recursive types, but whose countable saturated model is not decidable. This is easy to do if the restriction on the number of countable models is lifted; the difficulty arises because the set of types must be recursively complex, and yet sufficiently related to control the number of countable models. In [3] the desired theory T is such thatis a linear order with order type ω*. Also, the set of complete types of T is not . The last feature ensures that the countable saturated model is not decidable; the first feature allows the number of countable models to be controlled.


Sign in / Sign up

Export Citation Format

Share Document