axiom schema
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 27 (1) ◽  
pp. 31-45
Author(s):  
Avron Arnon

A system $HCL_{\overset{\neg}{\leftrightarrow}}$ in the language of {$ \neg, \leftrightarrow $} is obtained by adding a single negation-less axiom schema to $HLL_{\overset{\neg}{\leftrightarrow}}$ (the standard Hilbert-type system for multiplicative linear logic without propositional constants), and changing $ \rightarrow $ to $\leftrightarrow$. $HCL_{\overset{\neg}{\leftrightarrow}}$ is weakly, but not strongly, sound and complete for ${\bf  CL}_{\overset{\neg}{\leftrightarrow}}$ (the {$ \neg,\leftrightarrow$} – fragment of classical logic). By adding the Ex Falso rule to $HCL_{\overset{\neg}{\leftrightarrow}}$ we get a system with is strongly sound and complete for ${\bf CL}_ {\overset{\neg}{\leftrightarrow}}$ . It is shown that the use of a new rule cannot be replaced by the addition of axiom schemas. A simple semantics for which $HCL_{\overset{\neg}{\leftrightarrow}}$ itself is strongly sound and complete is given. It is also shown that  $L_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ , the logic induced by $HCL_{\overset{\neg}{\leftrightarrow}}$ , has a single non-trivial proper axiomatic extension, that this extension and ${\bf  CL}_{\overset{\neg}{\leftrightarrow}}$ are the only proper extensions in the language of { $\neg$, $\leftrightarrow$ } of $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ , and that $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ and its single axiomatic extension are the only logics in {$ \neg, \leftrightarrow$ } which have a connective with the relevant deduction property, but are not equivalent $\neg$ to an axiomatic extension of ${\bf R}_{\overset{\neg}{\leftrightarrow}}$ (the intensional fragment of the relevant logic ${\bf R}$). Finally, we discuss the question whether $ {\bf  L}_{HCL}$$_{\overset{\neg}{\leftrightarrow}}$ can be taken as a paraconsistent logic.


Author(s):  
Takahiro Sawasaki ◽  
Katsuhiko Sano

Abstract The paper presents semantically complete Hilbert-style systems for some variants of common sense modal predicate logic proposed by van Benthem and further developed by Seligman. The paper also investigates frame definability in the logics and shows what axiom schema is canonical in the logics. In addition to these semantic investigations on the logics, the paper provides the sequent calculi for some of the logics which enjoy cut elimination theorem.


This research proposal is on provable forms based on s yntactic theorem using Kleene Axiom schema. Enact model I and II of propositional formulas from enactment logic are proven in terms of theorems based on deductive rules. Work proves by deduction rules that Enact Model I and II are model theorems[1] in machinelevel interpretation. Enactprover is a machine program for reading and writing Kleene theorem proving axioms based one enactment logic.


Author(s):  
Frank Appiah

This research poster is on provable forms based on syntactic theorem using Kleene Axiom schema. Enact model I and II of propositional formulas from enactment logic are proven in terms of theorems based on deductive rules. Work proves by deduction rules that Enact Model I and II are model theorems in machine- level interpretation. Enactprover is a machine program for reading and writing Kleene theorem proving axioms based on enactment logic.


Author(s):  
Frank Appiah

This research proposal is on provable forms based on s yntactic theorem using Kleene Axiom schema. Enact model I and II of propositional formulas from enactment logic are proven in terms of theorems based on deductive rules. Work proves by deduction rules that Enact Model I and II are model theorems[1] in machinelevel interpretation. Enactprover is a machineprogramforreadingandwritingKleenetheoremprovingaxiomsbased onenactment logic.


2019 ◽  
pp. 109-129
Author(s):  
John Stillwell

This chapter focuses on arithmetical comprehension. Arithmetical comprehension is the most obvious set existence axiom to use when developing analysis in a system based on Peano arithmetic (PA) with set variables. This axiom asserts the existence of a set X of natural numbers for each property φ‎ definable in the language of PA. More precisely, if φ‎(n) is a property defined in the language of PA plus set variables, but with no set quantifiers, then there is a set X whose members are the natural numbers n such that φ‎(n). Since all such formulas φ‎ are asserted for, the arithmetical comprehension axiom is really an axiom schema. The reason set variables are allowed in φ‎ is to enable sets to be defined in terms of “given” sets. The reason set quantifiers are disallowed in φ‎ is to avoid definitions in which a set is defined in terms of all sets of natural numbers (and hence in terms of itself). The system consisting of PA plus arithmetical comprehension is called ACA0. This system lies at a remarkable “sweet spot” among axiom systems for analysis.


2018 ◽  
Vol 15 (2) ◽  
pp. 139
Author(s):  
John Wigglesworth

This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members.  A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators.  We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity.  We also show that the theory is consistent by providing an S5 Kripke model.  The paper concludes with some discussion of the nature of the modalities involved, drawing comparisons with noneism, the view that there are some non-existent objects.


2016 ◽  
Vol 45 (1) ◽  
Author(s):  
George Tourlakis

Reference [12] introduced a novel formula to formula translation tool (“formula-tors”) that enables syntactic metatheoretical investigations of first-order modallogics, bypassing a need to convert them first into Gentzen style logics in order torely on cut elimination and the subformula property. In fact, the formulator tool,as was already demonstrated in loc. cit., is applicable even to the metatheoreticalstudy of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema ☐A → ☐∀ A of the logics M3and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations.  In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complexproofs in [2,8]).


Sign in / Sign up

Export Citation Format

Share Document