Stability theory for topological logic, with applications to topological modules

1986 ◽  
Vol 51 (3) ◽  
pp. 755-769 ◽  
Author(s):  
T. G. Kucera

In this paper I show how to develop stability theory within the context of the topological logic first introduced by McKee [Mc 76], Garavaglia [G 78] and Ziegler [Z 76]. I then study some specific applications to topological modules; in particular I prove two quantifier élimination theorems, one a generalization of a result of Garavaglia.In the first section I present a summary of basic results on topological model theory, mostly taken from the book of Flum and Ziegler [FZ 80]. This is done primarily to fix notation, but I also introduce the notion of an Lt-elementary substructure. The important point with this concept, as with many others, appears to be to allow only individuals to appear as parameters, not open sets.In the second section I begin the study of stability theory for Lt. I first develop a translation of the topological language Lt into an ordinary first-order language L*. The first main theorem is (2.3), which shows that the translation is faithful to the model-theoretic content of Lt, and provides the necessary tools for studying Lt theories in the context of ordinary first-order logic. The translation allows me to consider individual stability theory for Lt: the stability-theoretic study of those types of Lt in which only individual variables occur freely and in which only individuals occur as parameters. I originally developed this stability theory entirely within Lt; the fact that the theorems and their proofs were virtually identical to those in ordinary first order logic suggested the reduction from Lt to L*.

2021 ◽  
Author(s):  
KARTHIK GURUMURTHI

A symbolic logical framework (L) consisting of first order logic augmented with a causal calculus has been provided to formalize, axiomatize and integrate theories of design. L is used to represent designs in the Function-Behavior-Structure (FBS) ontology in a single, widely applicable language that enables the following: seamless integration of representations of function, behavior and structure; and generality in the formalization of theories of design. FRs, constraints, structure and behavior are represented as sentences in L. FRs are represented (as abstractions of behavior) in the form of existentially quantified sentences, the instantiation of whose individual variables yields the representation of behavior. This enables the logical implication of FRs by behavior, without recourse to apriori criteria for satisfaction of FRs by behavior. Functional decomposition is represented to enable lower level FRs to logically imply the satisfaction of higher level FRs. The theory of whether and how structure and behavior satisfy FRs and constraints is represented as a formal proof in L. Important general attributes of designs such as solution-neutrality of FRs, probability of satisfaction of requirements and constraints (calculated in a Bayesian framework using Monte Carlo simulation), extent and nature of coupling, etc. have been defined in terms of the representation of a design in L. The entropy of a design is defined in terms of the above attributes of a design, based on which a general theory of what constitutes a good design has been formalized to include the desirability of solution-neutrality of (especially higher level) FRs, high probability of satisfaction of requirements and constraints, wide specifications, low variability and bias, use of fewer attributes to specify the design, less coupling (especially circular coupling at higher levels of FRs), parametrization, standardization, etc..


Author(s):  
Raymond M. Smullyan

As we remarked in the preface, although this volume is a sequel to our earlier volume G.I.T. (Gödel’s Incompleteness Theorems), it can be read independently by those readers familiar with at least one proof of Gödel’s first incompleteness theorem. In this chapter we give the notation, terminology and main results of G.I.T. that are needed for this volume. Readers familiar with G.I.T. can skip this chapter or perhaps glance through it briefly as a refresher. §0. Preliminaries. we assume the reader to be familiar with the basic notions of first-order logic—the logical connectives, quantifiers, terms, formulas, free and bound occurrences of variables, the notion of interpretations (or models), truth under an interpretation, logical validity (truth under all interpretations), provability (in some complete system of first-order logic with identity) and its equivalence to logical validity (Gödel’s completeness theorem). we let S be a system (theory) couched in the language of first-order logic with identity and with predicate and/or function symbols and with names for the natural numbers. A system S is usually presented by taking some standard axiomatization of first-order logic with identity and adding other axioms called the non-logical axioms of S.we associate with each natural number n an expression n̅ of S called the numeral designating n (or the name of n).we could, for example, take 0̅,1̅,2̅, . . . ,to be the expressions 0,0', 0",..., as we did in G.I.T. we have our individual variables arranged in some fixed infinite sequence v1, v2,..., vn , . . . . By F(v1, ..., vn) we mean any formula whose free variables are all among v1,... ,vn, and for any (natural) numbers k1,...,kn by F(к̅1 ,... к̅n), we mean the result of substituting the numerals к̅1 ,... к̅n, for all free occurrences of v1,... ,vn in F respectively.


2014 ◽  
Vol 20 (1) ◽  
pp. 39-79 ◽  
Author(s):  
JOHN T. BALDWIN

AbstractWe propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends this virtue to other complete theories. The interaction of model theory and traditional mathematics is examined by considering the views of such as Bourbaki, Hrushovski, Kazhdan, and Shelah to flesh out the argument that the main impact of formal methods on mathematics is using formal definability to obtain results in ‘mainstream’ mathematics. Moreover, these methods (e.g., the stability hierarchy) provide an organization for much mathematics which gives specific content to dreams of Bourbaki about the architecture of mathematics.


1970 ◽  
Vol 35 (1) ◽  
pp. 19-28 ◽  
Author(s):  
J. Donald Monk

The algebras studied in this paper were suggested to the author by William Craig as a possible substitute for cylindric algebras. Both kinds of algebras may be considered as algebraic versions of first-order logic. Cylindric algebras can be introduced as follows. Let ℒ be a first-order language, and let be an ℒ-structure. We assume that ℒ has a simple infinite sequence ν0, ν1, … of individual variables, and we take as known what it means for a sequence ν0, ν1, … of individual variables, and we take as known what it means for a sequence x = 〈x0, x1, …〉 of elements of to satisfy a formula ϕ of ℒ in . Let ϕ be the collection of all sequences x which satisfy ϕ in . We can perform certain natural operations on the sets ϕ, of basic model-theoretic significance: Boolean operations = cylindrifications diagonal elements (0-ary operations) . In this way we make the class of all sets ϕ into an algebra; a natural abstraction gives the class of all cylindric set algebras (of dimension ω). Thus this method of constructing an algebraic counterpart of first-order logic is based upon the notion of satisfaction of a formula by an infinite sequence of elements. Since, however, a formula has only finitely many variables occurring in it, it may seem more natural to consider satisfaction by a finite sequence of elements; then ϕ becomes a collection of finite sequences of varying ranks (cf. Tarski [10]). In forming an algebra of sets of finite sequences it turns out to be possible to get by with only finitely many operations instead of the infinitely many ci's and dij's of cylindric algebras. Let be the class of all algebras of sets of finite sequences (an exact definition is given in §1).


2009 ◽  
Vol 74 (1) ◽  
pp. 105-123
Author(s):  
Hannu Niemistö

§1. Introduction. A logic ℒ has a limit law, if the asymptotic probability of every query definable in ℒ converges. It has a 0–1-law if the probability converges to 0 or 1. The 0–1-law for first-order logic on relational vocabularies was independently found by Glebski et al. [6] and Fagin [5]. Later it has been shown for many other logics, for instance for fragments of second order logic [12], for finite variable logic [13] and for FO extended with the rigidity quantifier [3]. Lynch [14] has shown a limit law for first-order logic on vocabularies with unary functions.We say that two formulas or two logics are almost everywhere equivalent, if they are equivalent on a class of structures whose asymptotic probability measure is one [7]. A 0–1-law is usually proved by showing that every quantifier of the logic has almost everywhere quantifier elimination, i.e., every formula with just one quantifier in front of it is almost everywhere equivalent to a quantifier-free formula. Besides proving 0–1-law, this implies that the logic is (weakly) almost everywhere equivalent to first-order logic.The aim of this paper is to study, whether a logic with a 0–1-law can have greater expressive power than FO in the almost everywhere sense and to what extent. In particular, we are interested on the definability of linear order. Because a 0–1-law determines the almost everywhere expressive power of the sentences of the logic completely, but does not say anything about formulas explicitly, we have to assume some regularity on logics. We will therefore mostly consider extensions of first-order logic with generalized quantifiers.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


Sign in / Sign up

Export Citation Format

Share Document