Growth bound theorem for semigroups

2020 ◽  
pp. 185-192
Keyword(s):  
Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Hazel Cox ◽  
Michael Melgaard ◽  
Ville J. J. Syrjanen

In this paper, we investigate the maximum number of electrons that can be bound to a system of nuclei modelled by Hartree-Fock theory. We consider both the Restricted and Unrestricted Hartree-Fock models. We are taking a non-existence approach (necessary but not sufficient), in other words we are finding an upper bound on the maximum number of electrons. In giving a detailed account of the proof of Lieb’s bound [Theorem 1, Phys. Rev. A 29 (1984), 3018] for the Hartree-Fock models we establish several new auxiliary results, furthermore we propose a condition that, if satisfied, will give an improved upper bound on the maximum number of electrons within the Restricted Hartree-Fock model. For two-electron atoms we show that the latter condition holds.


2004 ◽  
Vol 25 (3) ◽  
pp. 279-287 ◽  
Author(s):  
Xu You-sheng ◽  
Liu Ci-qun ◽  
Lin Ji
Keyword(s):  

Author(s):  
Martin Muscat ◽  
Robert Hamilton

Bounding techniques for calculating shakedown loads are of great importance in design since this eliminates the need for performing full elasto-plastic cyclic loading analyses. The classical Melan’s lower bound theorem is widely used for calculating shakedown loads of pressure vessel components under proportional loading. Polizzotto extended the Melan’s theorem to the case of non-proportional loading acting on a structure. This paper presents a finite element method, based on Polizzotto’s theorem, to estimate the elastic shakedown load for a structure subjected to a combination of steady and cyclic mechanical loads. This method, called non-linear superposition, is then applied to investigate the shakedown behaviour of a pressure vessel component — a nozzle/cylinder intersection and that of a biaxially loaded square plate with a central hole. Results obtained for both problems are compared with those available in the literature and are verified by means of cyclic elasto-plastic finite element analysis.


2014 ◽  
Vol 797 ◽  
pp. 117-122 ◽  
Author(s):  
Carolina Bermudo ◽  
F. Martín ◽  
Lorenzo Sevilla

It has been established, in previous studies, the best adaptation and solution for the implementation of the modular model, being the current choice based on the minimization of the p/2k dimensionless relation obtained for each one of the model, analyzed under the same boundary conditions and efforts. Among the different cases covered, this paper shows the study for the optimal choice of the geometric distribution of zones. The Upper Bound Theorem (UBT) by its Triangular Rigid Zones (TRZ) consideration, under modular distribution, is applied to indentation processes. To extend the application of the model, cases of different thicknesses are considered


1970 ◽  
Vol 92 (1) ◽  
pp. 158-164 ◽  
Author(s):  
P. C. T. Chen

A method for selecting admissible velocity fields is presented for incompressible material. As illustrations, extrusion processes through three basic types of curved dies have been treated: cosine, elliptic, and hyperbolic. Upper-bound theorem is used in obtaining mean extrusion pressures and also in choosing the most suitable deformation pattern for extrusion through square dies. Effects of die geometry, friction, and material properties are discussed.


Sign in / Sign up

Export Citation Format

Share Document