scholarly journals A weak convergence theorem for relatively nonexpansive mappings and maximal monotone operators in a Banach space

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chin-Tzong Pang ◽  
Eskandar Naraghirad ◽  
Ching-Feng Wen

We study Mann type iterative algorithms for finding fixed points of Bregman relatively nonexpansive mappings in Banach spaces. By exhibiting an example, we first show that the class of Bregman relatively nonexpansive mappings embraces properly the class of Bregman strongly nonexpansive mappings which was investigated by Martín-Márques et al. (2013). We then prove weak convergence theorems for the sequences produced by the methods. Some application of our results to the problem of finding a zero of a maximal monotone operator in a Banach space is presented. Our results improve and generalize many known results in the current literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Kamonrat Nammanee ◽  
Suthep Suantai ◽  
Prasit Cholamjiak

We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems.


2009 ◽  
Vol 2009 ◽  
pp. 1-20 ◽  
Author(s):  
Somyot Plubtieng ◽  
Wanna Sriprad

We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).


Sign in / Sign up

Export Citation Format

Share Document