projection algorithms
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 41)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 62 ◽  
pp. C98-C111
Author(s):  
Neil Dizon ◽  
Jeffrey Hogan ◽  
Scott Lindstrom

We introduce a two-stage global-then-local search method for solving feasibility problems. The approach pairs the advantageous global tendency of the Douglas–Rachford method to find a basin of attraction for a fixed point, together with the local tendency of the circumcentered reflections method to perform faster within such a basin. We experimentally demonstrate the success of the method for solving nonconvex problems in the context of wavelet construction formulated as a feasibility problem.  References F. J. Aragón Artacho, R. Campoy, and M. K. Tam. The Douglas–Rachford algorithm for convex and nonconvex feasibility problems. Math. Meth. Oper. Res. 91 (2020), pp. 201–240. doi: 10.1007/s00186-019-00691-9 R. Behling, J. Y. Bello Cruz, and L.-R. Santos. Circumcentering the Douglas–Rachford method. Numer. Algor. 78.3 (2018), pp. 759–776. doi: 10.1007/s11075-017-0399-5 R. Behling, J. Y. Bello-Cruz, and L.-R. Santos. On the linear convergence of the circumcentered-reflection method. Oper. Res. Lett. 46.2 (2018), pp. 159–162. issn: 0167-6377. doi: 10.1016/j.orl.2017.11.018 J. M. Borwein, S. B. Lindstrom, B. Sims, A. Schneider, and M. P. Skerritt. Dynamics of the Douglas–Rachford method for ellipses and p-spheres. Set-Val. Var. Anal. 26 (2018), pp. 385–403. doi: 10.1007/s11228-017-0457-0 J. M. Borwein and B. Sims. The Douglas–Rachford algorithm in the absence of convexity. Fixed-point algorithms for inverse problems in science and engineering. Springer, 2011, pp. 93–109. doi: 10.1007/978-1-4419-9569-8_6 I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41.7 (1988), pp. 909–996. doi: 10.1002/cpa.3160410705 N. D. Dizon, J. A. Hogan, and J. D. Lakey. Optimization in the construction of nearly cardinal and nearly symmetric wavelets. In: 13th International conference on Sampling Theory and Applications (SampTA). 2019, pp. 1–4. doi: 10.1109/SampTA45681.2019.9030889 N. D. Dizon, J. A. Hogan, and S. B. Lindstrom. Circumcentering reflection methods for nonconvex feasibility problems. arXiv preprint arXiv:1910.04384 (2019). url: https://arxiv.org/abs/1910.04384 D. J. Franklin. Projection algorithms for non-separable wavelets and Clifford Fourier analysis. PhD thesis. University of Newcastle, 2018. doi: 1959.13/1395028. D. J. Franklin, J. A. Hogan, and M. K. Tam. A Douglas–Rachford construction of non-separable continuous compactly supported multidimensional wavelets. arXiv preprint arXiv:2006.03302 (2020). url: https://arxiv.org/abs/2006.03302 D. J. Franklin, J. A. Hogan, and M. K. Tam. Higher-dimensional wavelets and the Douglas–Rachford algorithm. 13th International conference on Sampling Theory and Applications (SampTA). 2019, pp. 1–4. doi: 10.1109/SampTA45681.2019.9030823 B. P. Lamichhane, S. B. Lindstrom, and B. Sims. Application of projection algorithms to differential equations: Boundary value problems. ANZIAM J. 61.1 (2019), pp. 23–46. doi: 10.1017/S1446181118000391 S. B. Lindstrom and B. Sims. Survey: Sixty years of Douglas–Rachford. J. Aust. Math. Soc. 110 (2020), 1–38. doi: 10.1017/S1446788719000570 S. B. Lindstrom, B. Sims, and M. P. Skerritt. Computing intersections of implicitly specified plane curves. J. Nonlin. Convex Anal. 18.3 (2017), pp. 347–359. url: http://www.yokohamapublishers.jp/online2/jncav18-3 S. G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Amer. Math. Soc. 315.1 (1989), pp. 69–87. doi: 10.1090/S0002-9947-1989-1008470-5 Y. Meyer. Wavelets and operators. Cambridge University Press, 1993. doi: 10.1017/CBO9780511623820 G. Pierra. Decomposition through formalization in a product space. Math. Program. 28 (1984), pp. 96–115. doi: 10.1007/BF02612715


2021 ◽  
Author(s):  
Hieu Thao Nguyen ◽  
Oleg Soloviev ◽  
D Russell Luke ◽  
Michel Verhaegen

Abstract We develop for the first time a mathematical framework in which the class of projection algorithms can be applied to high numerical aperture (NA) phase retrieval. Within this framework, we first analyze the basic steps of solving the high-NA phase retrieval problem by projection algorithms and establish the closed forms of all the relevant projection operators. We then study the geometry of the high-NA phase retrieval problem and the obtained results are subsequently used to establish convergence criteria of projection algorithms in the presence of noise. Making use of the vectorial point-spread-function (PSF) is, on the one hand, the key difference between this paper and the literature of phase retrieval mathematics which deals with the scalar PSF. The results of this paper, on the other hand, can be viewed as extensions of those concerning projection methods for low-NA phase retrieval. Importantly, the improved performance of projection methods over the other classes of phase retrieval algorithms in the low-NA setting now also becomes applicable to the high-NA case. This is demonstrated by the accompanying numerical results which show that available solution approaches for high-NA phase retrieval are outperformed by projection methods.


2021 ◽  
Vol 7 (8) ◽  
pp. 147
Author(s):  
Sotirios Magkos ◽  
Andreas Kupsch ◽  
Giovanni Bruno

The reconstruction of cone-beam computed tomography data using filtered back-projection algorithms unavoidably results in severe artefacts. We describe how the Direct Iterative Reconstruction of Computed Tomography Trajectories (DIRECTT) algorithm can be combined with a model of the artefacts for the reconstruction of such data. The implementation of DIRECTT results in reconstructed volumes of superior quality compared to the conventional algorithms.


2021 ◽  
Vol 11 (16) ◽  
pp. 7197
Author(s):  
Yourui Tong ◽  
Bochen Jia ◽  
Shan Bao

Warning pedestrians of oncoming vehicles is critical to improving pedestrian safety. Due to the limitations of a pedestrian’s carrying capacity, it is crucial to find an effective solution to provide warnings to pedestrians in real-time. Limited numbers of studies focused on warning pedestrians of oncoming vehicles. Few studies focused on developing visual warning systems for pedestrians through wearable devices. In this study, various real-time projection algorithms were developed to provide accurate warning information in a timely way. A pilot study was completed to test the algorithm and the user interface design. The projection algorithms can update the warning information and correctly fit it into an easy-to-understand interface. By using this system, timely warning information can be sent to those pedestrians who have lower situational awareness or obstructed view to protect them from potential collisions. It can work well when the sightline is blocked by obstructions.


Author(s):  
Peng Chen ◽  
Mohamed Wahib ◽  
Xiao Wang ◽  
Shinichiro Takizawa ◽  
Takahiro Hirofuchi ◽  
...  

Author(s):  
Haizhen Li ◽  
Yan Tang

This paper mainly studies the average sampling and reconstruction in shift-invariant subspaces of mixed Lebesgue spaces $L^{p,q}(\mathbb{R}^{d+1})$, under the condition that the generator $\varphi$ of the shift-invariant subspace belongs to a hybrid-norm space of mixed form, which is weaker than the usual assumption of Wiener amalgam space and allows to control the orders $p,q$. First, the sampling stability for two kinds of average sampling functionals are established. Then, we give the corresponding iterative approximation projection algorithms with exponential convergence for recovering the time-varying shift-invariant signals from the average samples.


Sign in / Sign up

Export Citation Format

Share Document