scholarly journals EFFECT OF OIL ON HEAT TRANSFER OF MIXED REFRIGERANT BOILING IN EVAPORATOR TUBES IN REFRIGERATION MACNINES

Author(s):  
Alexey Vasilievich Ezhov ◽  
Sergey Sergeevich Ivanov ◽  
Aleksandr Bukin ◽  
Vladimir Grigorievich Bukin

The paper presents the results of an experimental study of the effect of oil on the heat transfer rate at boiling of mixed refrigerant R406A. Since the air conditioning system is not a pure refrigerant, but a mixture of oil with a concentration of up to 8%, such an amount of oil affects both hydrodynamics and heat exchange in the evaporators. The experimental work covers the entire range of regime parameters typical for these systems. There is shown the process of changing oil concentration in the pipe, as the working fluid boils, proving that most of the oil pipe does not impair the heat exchange in the course of two-phase flow boiling. Different modes of refrigerant R406A boiling dynamics have been defined, and each mode is given a quantitative assessment in terms of the effects of the oil and explaining of this effect on the fluid flow and heat transfer based on visual observations and the experiment results. The main factor of the effect is the freon-oil foam, which increases the proportion of the wetted surface in the wave and stratified modes and the heat transfer rate to 30%. A comparison of the heat transfer coefficients both in the cross section and along the pipe length has been performed, showing that the maximum change in heat transfer occurs in the upper part of the surface due to developing a dry wall on it and wetting it with freon-oil foam. A comparison of the heat transfer rate of pure refrigerant R406A has been done; the presence of oil in it shows that the effect of oil is complex and ambiguous. Calculation and criterion dependences for calculation of heat transfer coefficients in different modes have been proposed.

Author(s):  
Wenhai Li ◽  
Ken Alabi ◽  
Foluso Ladeinde

Over the years, empirical correlations have been developed for predicting saturated flow boiling [1–15] and condensation [16–30] heat transfer coefficients inside horizontal/vertical tubes or micro-channels. In the present work, we have examined 30 of these models, and modified many of them for use in compact plate-fin heat exchangers. However, the various correlations, which have been developed for pipes and ducts, have been modified in our work to make them applicable to extended fin surfaces. The various correlations have been used in a low-order, one-dimensional, finite-volume type numerical integration of the flow and heat transfer equations in heat exchangers. The NIST’s REFPROP database [31] is used to account for the large variations in the fluid thermo-physical properties during phase change. The numerical results are compared with Yara’s experimental data [32]. The validity of the various boiling and condensation models for a real plate-fin heat exchanger design is discussed. The results show that some of the modified boiling and condensation correlations can provide acceptable prediction of heat transfer coefficient for two-phase flows in compact plate-fin heat exchangers.


Author(s):  
Cheol Huh ◽  
Moo Hwan Kim

With a single microchannel and a series of microheaters made with MEMS technique, two-phase pressure drop and local flow boiling heat transfer were investigated using deionized water in a single horizontal rectangular microchannel. The test microchannel has a hydraulic diameter of 100 μm and length of 40 mm. A real time observation of the flow patterns with simultaneous measurement are made possible. Tests are performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes of from 100 to 600 kW/m2. The experimental local flow boiling heat transfer coefficients and two-phase frictional pressure gradient are evaluated and the effects of heat flux, mass flux, and vapor qualities on flow boiling are studied. Both the evaluated experimental data are compared with existing correlations. The experimental heat transfer coefficients are nearly independent on mass flux and the vapor quality. Most of all correlations do not provide reliable heat transfer coefficients predictions with vapor quality and prediction accuracy. As for two-phase pressure drop, the measured pressure drop increases with the mass flux and heat flux. Most of all existing correlations of two-phase frictional pressure gradient do not predict the experimental data except some limited conditions.


Author(s):  
Haruhiko Ohta ◽  
Koichi Inoue ◽  
Yuichiro Shimada

Flow boiling heat transfer in a single small tube is investigated by using FC72 as a working fluid. The heat transfer coefficients are measured in the ranges of heat flux 2–24kW/m2 and mass velocity 100–400kg/m2s under the condition of near atmospheric pressure. Test tube, made of stainless steel, has an inner diameter of 0.51mm and a heated length of 200mm. The tube is located horizontally in a vacuum chamber to reduce the heat loss and to minimize the time to obtain data regarded as that of steady state. In the single-phase region, heat transfer coefficients due to forced convection are in good agreement with the values from the conventional theories. In the saturated region, measured heat transfer characteristics are quite different depending on whether the test liquid is deaerated or not deaerated before the experiments. By using deaerated liquid, three different heat transfer regimes are observed: In the first regime, the heat transfer is dominated by nucleate boiling in low vapor quality, and the heat transfer is deteriorated or enhanced depending on the channel confinement and heat flux. In the second regime, the heat transfer is dominated by two-phase forced convection in moderate quality as is well known for the tubes of normal size. In the third regime, the heat transfer is dominated again by two-phase forced convection, but is deteriorated in high quality. One or two regimes can disappear or become unclear depending on the conditions of flow and heating. The effects of vapor quality and mass velocity on the heat transfer characteristics due to two-phase forced convection in the moderate vapor quality are clarified in the experimental ranges tested. And a reason for the gradual heat transfer deterioration observed in high quality is discussed based on the liquid-vapor behaviors inherent in small diameter tubes.


2018 ◽  
Vol 130 ◽  
pp. 624-636 ◽  
Author(s):  
Sofia Korniliou ◽  
Coinneach Mackenzie-Dover ◽  
John R.E. Christy ◽  
Souad Harmand ◽  
Anthony J. Walton ◽  
...  

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Saptarshi Basu ◽  
Sidy Ndao ◽  
Gregory J. Michna ◽  
Yoav Peles ◽  
Michael K. Jensen

An experimental study of two-phase heat transfer coefficients was carried out using R134a in uniformly heated horizontal circular microtubes with diameters from 0.50 mm to 1.60 mm over a range of mass fluxes, heat fluxes, saturation pressures, and vapor qualities. Heat transfer coefficients increased with increasing heat flux and saturation pressure but were independent of mass flux. The effects of vapor quality on heat transfer coefficients were less pronounced and varied depending on the quality. The data were compared with seven flow boiling correlations. None of the correlations predicted the experimental data very well, although they generally predicted the correct trends within limits of experimental error. A correlation was developed, which predicted the heat transfer coefficients with a mean average error of 29%. 80% of the data points were within the ±30% error limit.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7705
Author(s):  
Anas F. A. Elbarghthi ◽  
Mohammad Yousef Hdaib ◽  
Václav Dvořák

Ejector refrigeration systems are rapidly evolving and are poised to become one of the most preferred cooling systems in the near future. CO2 transcritical refrigeration systems have inherently high working pressures and discharge temperatures, providing a large volumetric heating capacity. In the current research, the heat ejected from the CO2 gas cooler was proposed as a driving heating source for the compression ejector system, representing the energy supply for the generator in a combined cycle. The local design approach was investigated for the combined plate-type heat exchanger (PHE) via Matlab code integrated with the NIST real gas database. HFO refrigerants (1234ze(E) and 1234yf) were selected to serve as the cold fluid on the generator flowing through three different phases: subcooled liquid, a two-phase mixture, and superheated vapour. The study examines the following: the effectiveness, the heat transfer coefficients, and the pressure drop of the PHE working fluids under variable hot stream pressures, cold stream flow fluxes, and superheated temperatures. The integration revealed that the cold fluid mixture phase dominates the heat transfer coefficients and the pressure drop of the heat exchanger. By increasing the hot stream inlet pressure from 9 MPa to 12 MPa, the cold stream two-phase convection coefficient can be enhanced by 50% and 200% for R1234yf and R1234ze(E), respectively. Conversely, the cold stream two-phase convection coefficient dropped by 17% and 37% for R1234yf and R1234ze(E), respectively. The overall result supports utilising the ejected heat from the CO2 transcritical system, especially at high CO2 inlet pressures and low cold channel flow fluxes. Moreover, R1234ze(E) could be a more suitable working fluid because it possesses a lower pressure drop and bond number.


Author(s):  
Emil Rahim ◽  
Avram Bar-Cohen

Forced flow of refrigerants and dielectric liquids, undergoing phase change in a heated microgap channel between chips or in parallel microchannels in a compact cooler, is a promising candidate for the thermal management of advanced semiconductor devices. It has been found that Annular flow is the dominant flow regime in such miniature channels and that relatively high heat transfer coefficients are encountered in the moderate-to-high quality sections of such channels. Following a discussion of flow regimes and thermal characteristics of miniature channels, attention turns to exploring the parametric dependence of annular flow thermal transport in microgaps including the effects of channel diameter, mass flux, and working fluid on the two-phase heat transfer coefficients.


2014 ◽  
Vol 348 ◽  
pp. 20-26
Author(s):  
I. Pranoto ◽  
C. Yang ◽  
L.X. Zheng ◽  
K.C. Leong ◽  
P.K. Chan

This paper presents an experimental study of flow boiling heat transfer from carbon nanotube (CNT) structures in a two-phase cooling facility. Multi-walled CNT (MWCNT) structures of dimensions 80 mm × 60 mm were applied to a horizontal flow boiling channel. Two CNT structures with different properties viz. NC-3100 and MERCSD were tested with a dielectric liquid FC-72. The height of the CNT structures was fixed at 37.5 μm and tests were conducted at coolant mass fluxes of 35, 50, and 65 kg/m2·s under saturated flow boiling conditions. The experimental results show that the CNT structures enhance the boiling heat transfer coefficients by up to 1.6 times compared to the smooth aluminum surface. The results also show that the CNT structures increase significantly the Critical Heat Flux (CHF) of the smooth aluminum surface from 66.7 W/cm2 to 100 W/cm2.


2011 ◽  
Vol 15 (1) ◽  
pp. 183-194 ◽  
Author(s):  
Fard Haghshenas ◽  
Mohammad Talaie ◽  
Somaye Nasr

The plate and concentric tube heat exchangers are tested by using the water-water and nanofluid-water streams. The ZnO/Water (0.5%v/v) nanofluid has been used as the hot stream. The heat transfer rate omitted of hot stream and overall heat transfer coefficients in both heat exchangers are measured as a function of hot and cold streams mass flow rates. The experimental results show that the heat transfer rate and heat transfer coefficients of the nanofluid in both of the heat exchangers is higher than that of the base liquid (i.e., water) and the efficiency of plate heat exchange is higher than concentric tube heat exchanger. In the plate heat exchanger the heat transfer coefficient of nanofluid at mcold = mhot = 10 gr/sec is about 20% higher than base fluid and under the same conditions in the concentric heat exchanger is 14% higher than base fluid. The heat transfer rate and heat transfer coefficients increases with increase in mass flow rates of hot and cold streams. Also the CFD1 code is used to simulate the performance of the mentioned heat exchangers. The CFD results are compared to the experimental data and showed good agreement. It is shown that the CFD is a reliable tool for investigation of heat transfer of nanofluids in the various heat exchangers.


Sign in / Sign up

Export Citation Format

Share Document