scholarly journals Priming, a Promising Practical Approach to Improve Seed Germination and Plant Growth in Saline Conditions

Author(s):  
Hadi Pirasteh-Anosheh ◽  
Seyedeh-Elahe Hashemi

Salinity as a major constrain of plant productivity affects growth and development at any stage of growth cycle. Under saline conditions, rapid and uniform germination of plants would be necessary to achieve enhanced quality and potential yield. In such situation, seed priming could be an important approach to increase plant germination, growth and consequently yield. Priming is defined as seed presowing in solutions that allow them to imbibe water to improve the first stage of germination; however, this prevents radical protrusion through seed coat. Seed priming improves establishment in many plant species, and include hydro-priming, osmo-priming, halo-priming, thermo-priming and hormo-priming. Overall, accelerated biochemical and physiological process such cell division and starch hydrolysis, induced α-amylase activity, greater germination rate, less Na+ and higher K+ accumulation and induced antioxidative system might be some mechanisms for salinity tolerance in primed plants. Since shortage of water availability due to osmotic stress is the first phase in salt stress, so one of the major mechanisms for improved germination and growth in primed seeds is accelerated water imbibition under saline conditions. In this paper, different seed priming strategies are examined and comprised in different plants growing in saline conditions. Since different types of seed priming have positive effects on germination, emergence, growth, yield as well as biochemical traits and quality of plants, it seems that seed priming could be promising approach for improved salinity tolerance in future world with changed climate. More researches on detail of seed priming for each agent is needed for each plant.

2020 ◽  
pp. 20-23
Author(s):  
Panagiotis Kanatas ◽  
Vyronas Dellaportas ◽  
Ioanna Kakabouki ◽  
Panayiota Papastylianou

This study evaluated the effects of seed priming on germination and growth of A. millefolium by means of laboratory and greenhouse experiments conducted during 2018 in the Agricultural University of Athens. Treatments were GA3 (400 and 800 ppm), potassium nitrate (2% and 4%), polyethylene-glycol (soaking for 12 and 24h) besides an untreated control. Experiment in Petri dishes revealed that GA3 at 400 ppm, potassium nitrate (at concentration 2 and 4%) and PEG significantly increased germination percentage of A. millefolium, while germination rate was also significantly improved as a result of all seed priming techniques. In addition, due to the soil experiment, seedling emergence was significantly increased by GA3 at 400 ppm, potassium nitrate (at both concentrations) and PEG compared with the untreated seeds. Dry biomass of the young seedlings was significantly enhanced by means of GA3 (at 400 and 800 ppm), KNO3 (4%) and PEG for 24 h, indicating the potential effect of seed priming on first growth as well. The results of the present study revealed the significant positive effects of seed priming on A. millefolium seed germination, seedling emergence and early growth.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


2020 ◽  
Vol 13 (5) ◽  
pp. 18
Author(s):  
A. M. S. Oliveira ◽  
A. A. Silva ◽  
M. C. Vasconcelos ◽  
J. A. A. Granja ◽  
J. M. R. Faria ◽  
...  

Physiological conditioning is a technique that consists in controlling the speed of water uptake by seeds, with osmotic solutions, aiming to improve their quality, reducing time and increasing germination rate. Eremanthus erythropappus (D.C.) MacLeish seeds were subjected to priming with polyethylene glycol 6000 (PEG), potassium nitrate (KNO3) and the combination of the two at the concentrations of 0.4; -0.8; -1.0; -1.2 and -1.4 MPa for four, six and eight days. Germination, germination speed index (GSI), emergence, emergence speed index (ESI) and expression of superoxide dismutase (SOD), catalase (CAT) and peroxidase (PO) enzymes were assessed. E. erythropappus seed priming in polyethylene glycol solution with potentials between -0.8 MPa and -1.4 MPa is not satisfactory because it adversely affects germination and reduces the activity of peroxidase and catalase enzymes. The other substances were not significant so there is a need for further research with other substances and / or concentrations


Agriculture ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 94
Author(s):  
Iman Mirmazloum ◽  
Attila Kiss ◽  
Éva Erdélyi ◽  
Márta Ladányi ◽  
Éva Zámboriné Németh ◽  
...  

Two experiments (in Petri dishes and in soil) were conducted to investigate the effects of osmopriming on seed germination and the early seedling characteristics of caraway (Carum carvi L. var. annua). The priming treatments in the Petri dish experiment were: polyethylene glycol (5%, 10% and 20%), KNO3 (0.5%, 1% and 2%) and KCL (1%, 2% and 4%) with three different soaking times (12, 24 and 36 h) along with control (non-primed seeds). Only polyethylene glycol and H2O were applied in the cell tray experiment, which were then compared with the non-primed seeds. In the Petri dish experiment, all three priming reagents significantly enhanced seedling length, with the most effective treatments being 5% PEG, 2% KNO3 and 1% KCL for 12 h. The plumule dry weights were also increased significantly after PEG (20% for 36 h), KNO3 (2% for 24 and 36 h) and KCL (1% for 12 h) treatments in comparison with the control. In the soil experiment, osmopriming with PEG significantly improved the germination rate (GR) and percentage, the plumule dry and fresh weights and the plumule length of caraway seedlings when compared with the control. A 23% higher germination percentage was recorded for the seeds treated with 5% PEG for 24 h as compared with the non-primed seeds. The PEG-primed seeds produced significantly longer seedlings when treated with 5% PEG for 24 h. All of the applied PEG treatments significantly enhanced the plumule fresh and dry weights, with the best outcomes being after 5% PEG (24 h) and 10% PEG (36 h) treatments, respectively. The 12-h hydro-priming also significantly enhanced all of the studied germination parameters when compared to the control. The results of the presented experiments show the significant positive effects of seed priming on caraway germination and how early seedling performance can easily be adopted by producers.


2020 ◽  
pp. 1-7
Author(s):  
Ramadan A. M. Aly ◽  
Khaled Y. Abdel-Halim

Two field experiments were conducted during two seasons of 2017 and 2018 to evaluate the effect of both bio-fertilizer (inoculated or uninoculated) and selenium (Se) spray at 0.5, and 10 ppm on vegetative growth, pigments, yield and quality of potato plants. The results indicated that, vegetative growth characters (number of leaves, plant height, plant fresh weight, plant dry weight, leaf area and leaf pigments (chlorophyll a, chlorophyll b and chlorophyll a and b were significantly increased with Bio-fertilizers (Halex-2, and High rate of Se (10 ppm), in both seasons. Plant yield of tuber, number of tubers/plant, average tuber weight and tuber yield/Fed and (tuber content of starch and protein), generally, seemed to be increased with the Bio-fertilizer (Halex-2) and high rate of Se, in both growing seasons. The interaction between Bio-fertilizer (Halex-2) and Se reflected positive effects on the all studied quantitative and qualitative characters of potato plants.


2020 ◽  
Vol 12 (20) ◽  
pp. 8490
Author(s):  
Ni Luh Suriani ◽  
Dewa Ngurah Suprapta ◽  
Novizar Nazir ◽  
Ni Made Susun Parwanayoni ◽  
Anak Agung Ketut Darmadi ◽  
...  

Rice is a crop that is consumed as a staple food by the majority of the people in the world and therefore failure in rice crops, due to any reason, poses a severe threat of starvation. Rice blast, caused by a fungus Pyricularia oryzae, has been ranked among the most threatening plant diseases of rice and it is found wherever rice is grown. All of the rice blast disease management strategies employed so far have had limited success and rice blast has never been eliminated from rice fields. Hence, there is a need to look for the best remedy in terms of effectiveness, sustainability, and organic nature of the method. This study was aimed at determining the plant growth-promoting and fungicidal effects of a mixture of Piper caninum and Piper betle var. Nigra leaves extracts and rhizobacteria. Gas chromatography–mass spectrophotometry (GC-MS) analysis of a mixture of leaves extracts of these plants revealed the presence of new bioactive compounds such as alpha.-gurjunene, gamma.-terpinene, and ethyl 5-formyl 3-(2-ethoxycarbonyl) in a mixture of leaves extracts of P. caninum and P. betle var. Nigra. The mixture of these extracts reduced the intensity of blast disease, inhibited P. oryzae, and improved the growth, yield, and quality of Bali rice. All treatments comprising of different concentrations of a mixture of leaves extracts of P. caninum and P. betle var. Nigra plus rhizobacteria exhibited biocontrol and bioefficacy. However, a 2% concentration of a mixture of these leaves extracts with plant growth-promoting rhizobacteria (PGPR) exhibited potent inhibition of growth of P. oryzae, a significant reduction in the intensity of blast disease, and a maximum increase in growth, yield, and quality of Bali rice. In the 15th week, the intensity of blast disease decreased from 80.18% to 7.90%. The mixture of leaves extract + PGPR also improved the height of the plant, the number of tillers, number of leaves, number of grains per panicle, number of heads per panicle, and the full-grain weight per clump. Applications of various concentrations of a mixture of leaves extracts + PGPR resulted in improvement in the potential yield of rice, however, the application of 2% extracts + PGPR gave the highest potential yield of 5.61 tha−1 compared to the low yields in the control and other treatments. The high grain yield observed with the treatment was caused by the low intensity of blast disease. This treatment also strengthened the stem and prevented the drooping of the plant and improved the quality of rice grain.


2018 ◽  
Vol 111 (2) ◽  
pp. 315 ◽  
Author(s):  
Senad MURTIC ◽  
Rodoljub OLJACA ◽  
Mirela SMAJIC MURTIC ◽  
Amila VRANAC ◽  
Ivana KOLESKA ◽  
...  

<p>An experiment was carried out to determine the effect of foliar application of seaweed extract (0.2 %) on the growth, yield and quality of cherry tomato under stress and non-stress conditions. The greenhouse experiment was set up in a randomized block design with four treatments in three replications. Treatments were as follows: V<sub>1</sub> - seedlings treated by seaweed extract and subjected to drought; V<sub>2</sub> - seedlings treated by seaweed extract and regularly watered; V<sub>3</sub> - non-treated seedlings subjected to drought; V<sub>4</sub> - non-treated seedlings regularly watered. Cherry tomato seedlings treated by seaweed extract had a lower content of proline and higher leaf water potential compared to non-treated seedlings under stress conditions, indicating that application of this fertilizer contributes to better adaptation of cherry tomato seedlings to stress. Treatment with seaweed extract also positively influenced the yield and quality of cherry tomato (total soluble solids, vitamin C, lycopene) under both standard and drought stress conditions as compared to untreated plants in same conditions. Positive effects of seaweed extract on growth and quality of cherry tomato are result of its specific composition, as well as ability of cherry tomato plants to utilize bioactive substances in seaweed extracts for its growth and development.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 729
Author(s):  
Manisha Tondey ◽  
Anu Kalia ◽  
Alla Singh ◽  
Gurmeet Singh Dheri ◽  
Monica Sachdeva Taggar ◽  
...  

Nano-fertilizers of essential plant nutrients, including micronutrients, have the potential to improve nutrient use efficiency and productivity of field crops in deficient soils. The present study reports the comparative influence of zinc oxide nanoparticles (ZnONPs) and bulk Zn salt (ZnSO4) on the growth, yield, and quality of fodder maize (Zea mays) (var. J-1006) cultivated under field conditions in the year 2019. Three levels (0, 20, and 40 mg L−1) of Zn fertilizers were used for seed priming and coating in triplicate following the randomized complete block design model. An increase in vegetative and yield parameters (number of plants, plant height, stover yield, plant biomass), acid detergent fiber (ADF%), and hemicellulose contents and shoot zinc (Zn) content on treatment of seeds with ZnONPs (20 mg L−1) concentration as compared to bulk ZnSO4 and control treatments was observed. The application of ZnONPs (40 mg L−1) significantly enhanced the total chlorophyll content, available soil nitrogen and phosphorus, neutral detergent fiber (NDF%), and cellulose contents and improved the total soil microbial counts and soil enzyme activities (dehydrogenase, acid and alkaline phosphatase enzyme activities), whereas a significant increase in available soil potassium and zinc contents was recorded under ZnONPs (20 mg L−1) treatments. These findings suggest an encouraging effect on the growth and yield attributing characteristics of fodder maize after ZnONPs seed coating at low concentration. Furthermore, ZnONPs seed coating can also be considered an effective tool for the delivery of Zn micronutrient to fodder maize crop.


2020 ◽  
Vol 48 (3) ◽  
pp. 1458-1464
Author(s):  
Xian-Zong XIA ◽  
Gregorio PADULA ◽  
Leszek KUBISZ ◽  
Roman HOŁUBOWICZ

In recent years, the application of magnetism in agriculture has been paid more and more attention to, especially in the field of its treatment on the seed germination and physiological indexes of seedlings grown out of them. In this experiment, the radish (Raphanus sativus L.) seeds of two cultivars ‘Carmen’ and ‘Szkarłatna z Białym Końcem’ were treated by 20 mT low frequency magnetic field (LFMF) for 10, 30 and 60 minutes, respectively. The MF was generated from a Viofor JPS Delux - a patented device adopted from the routine medical magnetic therapy. By measuring their seed germination rate (energy), seedling length and fresh weight, it was proved that LFMF improved the seed quality of both radish cultivars and the best results were received for the longest exposing time. The received that way results were similar as reported for priming of radish seeds. The developed treatment has a great potential in replacing traditional seed priming methods. However, for its commercial use, for selected crops and cultivars, further research is still needed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pratibha Acharya ◽  
Guddadadarangavvanahally K. Jayaprakasha ◽  
Kevin M. Crosby ◽  
John L. Jifon ◽  
Bhimanagouda S. Patil

Sign in / Sign up

Export Citation Format

Share Document