scholarly journals The influence of a dosage regimen of dexamethasone on detection of normal B-cell precursors in the bone marrow of children with BCP-ALL at the end of induction therapy

2020 ◽  
Vol 19 (1) ◽  
pp. 53-57
Author(s):  
E. V. Mikhailova ◽  
T. Yu. Verzhbitskaya ◽  
J. V. Roumiantseva ◽  
O. I. Illarionova ◽  
A. A. Semchenkova ◽  
...  

Minimal residual disease (MRD) monitoring by flow cytometry at the end of induction therapy is one of the key ways of a prognosis assessment in patients with acute lymphoblastic leukemia (ALL). In B-cell precursor ALL (BCP–ALL), this method of MRD detection is complicated due to the immunophenotypic similarity between leukemic cells and normal B-cell precursors (BCPs). A decrease in intensity of induction therapy can lead to a more frequent appearance of normal BCPs in the bone marrow, which significantly complicates the MRD monitoring. Aim: to assess the incidence of normal BCPs in bone marrow on the 36th day of induction therapy with two different regimens of glucocorticoid (GC) administration according to ALL-MB 2015 protocol. This study was approved by the Independent Ethical Committee and the Academic Council of Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, Immunology Ministry of Healthcare of Russian Federation. The study included 220 patients with BCP-ALL who were randomized to two types of GC-based induction therapy: a continuous administration of dexamethasone (n = 139) and an intermittent regimen with a 1-week dexamethasone therapy stop (n = 81). On the 36th day of induction therapy, MRD and normal BCPs were quantified in bone marrow samples by flow cytometry. On the 36th day of treatment, 43.2% of BCP(+) samples were established in the intermittent-therapy group, and 27.3% in the continuous-therapy group (p = 0.016). Comparison of the BCP level in BCP(+) samples revealed the more equitable distribution of BCPs at different developmental stages in the intermittent-therapy group, meanwhile mainly the immature BCPs in a quantity of less than 0.01% were found in the continuous-therapy group. Reduced-intensity induction therapy for patients with BCP-ALL leads to a noticeable increase of normal BCPs in bone marrow at the end of this treatment stage. A higher rate of BCP(+) bone marrow samples hinder the MRD detection due to the immunophenotypic similarity of BCPs and leukemic cells.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fábio Magalhães-Gama ◽  
Marlon Wendell Athaydes Kerr ◽  
Nilberto Dias de Araújo ◽  
Hiochelson Najibe Santos Ibiapina ◽  
Juliana Costa Ferreira Neves ◽  
...  

In the hematopoietic microenvironment, leukemic cells secrete factors that imbalanced chemokine and cytokine production. However, the network of soluble immunological molecules in the bone marrow microenvironment of acute lymphoblastic leukemia (ALL) remains underexplored. Herein, we evaluated the levels of the immunological molecules (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL-4, IL-10, and IL-2) in the bone marrow plasma of 47 recently diagnosed B-cell acute lymphoblastic leukemia (B-ALL) patients during induction therapy using cytometric beads arrays. The results demonstrated that B-ALL patients showed high levels of CXCL9, CXCL10, IL-6, and IL-10 at the time of diagnosis, while at the end of induction therapy, a decrease in the levels of these immunological molecules and an increase in CCL5, IFN-γ, and IL-17A levels were observed. These findings indicate that B-ALL patients have an imbalance in chemokines and cytokines in the bone marrow microenvironment that contributes to suppressing the immune response. This immune imbalance may be associated with the presence of leukemic cells since, at the end of the induction therapy, with the elimination and reduction to residual cells, the proinflammatory profile is reestablished, characterized by an increase in the cytokines of the Th1 and Th17 profiles.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3531-3540 ◽  
Author(s):  
Angelo A. Cardoso ◽  
J. Pedro Veiga ◽  
Paolo Ghia ◽  
Hernani M. Afonso ◽  
W. Nicholas Haining ◽  
...  

We have previously shown that leukemia-specific cytotoxic T cells (CTL) can be generated from the bone marrow of most patients with B-cell precursor acute leukemias. If these antileukemia CTL are to be used for adoptive immunotherapy, they must have the capability to circulate, migrate through endothelium, home to the bone marrow, and, most importantly, lyse the leukemic cells in a leukemia-permissive bone marrow microenvironment. We demonstrate here that such antileukemia T-cell lines are overwhelmingly CD8+ and exhibit an activated phenotype. Using a transendothelial chemotaxis assay with human endothelial cells, we observed that these T cells can be recruited and transmigrate through vascular and bone marrow endothelium and that these transmigrated cells preserve their capacity to lyse leukemic cells. Additionally, these antileukemia T-cell lines are capable of adhering to autologous stromal cell layers. Finally, autologous antileukemia CTL specifically lyse leukemic cells even in the presence of autologous marrow stroma. Importantly, these antileukemia T-cell lines do not lyse autologous stromal cells. Thus, the capacity to generate anti–leukemia-specific T-cell lines coupled with the present findings that such cells can migrate, adhere, and function in the presence of the marrow microenvironment enable the development of clinical studies of adoptive transfer of antileukemia CTL for the treatment of ALL.


Author(s):  
Shuaeb Bhat ◽  
Saleem Hussain

<p class="abstract">We present a case of B-acute lymphoblastic leukemia in an elderly patient who presented with severe weakness and pancytopenia. The patient was a 75 year old Female whose blasts had an unusual morphology in form of coarse azurophilic granules and cytoplasmic blebs and on flow cytometry the blasts were present in the bright CD45 zone with a high side scatter. Bone marrow aspirate sample was subjected to multicolour flow cytometry using Beckman Coulter Navios® which is an 8 colour flow cytometer.  Flow cytometric analysis of the bone marrow aspirate showed blasts in the monocytic zone with a precursor B cell immunophenotype. Complete blood counts showed pancytopenia with peripheral blood film not showing any blasts. Bone marrow aspirate smears showed 20% blasts with coarse azurophilic granules and cytoplasmic blebs. The position of the blasts in this case which were in monocytic zone giving them a bright expression of CD45 and a high side scatter on the CD45 side scatter. This is not the usual position for blasts in B- acute lymphoblastic leukemia as these blasts are less complex. A bright expression of CD45 by blasts in B- acute lymphoblastic leukemia is known to be associated with a poor prognosis but the clinical significance of blasts being bright CD45 with a high side scatter is a very rare occurrence and more number of cases with a similar presentation are required to determine a prognostic significance.</p>


Author(s):  
Álvaro Martínez-Rubio ◽  
Salvador Chulián ◽  
Cristina Blázquez Goñi ◽  
Antonio Pérez Martínez ◽  
Manuel Ramírez Orellana ◽  
...  

Chimeric Antigen Receptor (CAR) T-cell therapy has demonstrated high rates of response in recurrent B-cell Acute Lymphoblastic Leukemia in children and young adults. Despite this success, a fraction of patients experience relapse after treatment. Relapse is often preceded by recovery of healthy B cells, which suggests loss or dysfunction of CAR T cells in bone marrow. This site is harder to access, and thus is not monitored as frequently as peripheral blood. Understanding the interplay between B cells, leukemic cells and CAR T cells in bone marrow is paramount in ascertaining the causes of lack of response. In this paper, we put forward a mathematical model representing the interaction between constantly renewing B cells, CAR T cells and leukemic cells in the bone marrow. Our model accounts for the maturation dynamics of B cells and incorporates effector and memory CAR T cells. The model provides a plausible description of the dynamics of the various cellular compartments in bone marrow after CAR T infusion. After exploration of the parameter space, we found that the dynamics of CAR T product and disease were independent of the dose injected, initial B-cell load and tumor burden. We also show theoretically the importance of CAR T product attributes in determining therapy outcome, and have studied a variety of possible response scenarios, including second dosage schemes. We conclude by setting out ideas for the refinement of the model.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 510-521
Author(s):  
PS Madsen ◽  
P Hokland ◽  
N Clausen ◽  
J Ellegaard ◽  
M Hokland

Heat shock protein 27 (hsp27) may function as a regulator of microfilament dynamics and may participate in signal transduction pathways of different cell growth regulators, with the mitogen- activated protein kinase-activated protein (MAPKAP) kinase 2 being a major enzyme responsible for its phosphorylation. Using two-dimensional gel electrophoresis, we have compared the expression levels of two hsp27 isoelectric variants (hsp27 isoforms) M2 (molecular weight, 26 kD; isoelectric point, 6.02) and M3 (molecular weight, 26 kD; isoelectric point, 5.60) in pediatric bone marrow CD19+CD10+B-cell precursors (BCPs) purified from either common acute lymphoblastic leukemia (c-ALL) patients, normal donors, or non-c-ALL patients. Compared with normal BCPs, we found increased hsp27 expressions (M2 isoform) (by a factor 5 to 9 of mean level) in c-ALL as well as in non- c-ALL (nonleukemic) precursors. Though increased phosphorylation of hsp27 (M3 isoform) was observed in BCPs from c-ALL patients at relapse (by a factor 3 of mean level compared with normal BCPs and precursors from c-ALL at diagnosis), which might represent a differential enzymatic activity, this was not distinguishable from that of non-c-ALL patients. Therefore, our studies suggest constitutive differences of hsp27 isoforms between pediatric leukemic BCPs and their relatively low- expressing, immunophenotypically normal bone marrow counterparts. In light of the occasional and possibly transient increase of hsp27 expression during nonleukemic BCP differentiation and the possible role of hsp27 in signal transduction to microfilaments, these differences might be of considerable biologic interest and of importance in future studies of regulated normal or dysregulated leukemic hematopoietic cellular differentiation.


1995 ◽  
Vol 181 (3) ◽  
pp. 1101-1110 ◽  
Author(s):  
M Kumagai ◽  
E Coustan-Smith ◽  
D J Murray ◽  
O Silvennoinen ◽  
K G Murti ◽  
...  

CD38 is a transmembrane glycoprotein expressed in many cell types, including lymphoid progenitors and activated lymphocytes. High levels of CD38 expression on immature lymphoid cells suggest its role in the regulation of cell growth and differentiation, but there is no evidence demonstrating a functional activity of CD38 on these cells. We used stroma-supported cultures of B cell progenitors and anti-CD38 monoclonal antibodies (T16 and IB4) to study CD38 function. In cultures of normal bone marrow CD19+ cells (n = 5), addition of anti-CD38 markedly reduced the number of cells recovered after 7 d. Cell loss was greatest among CD19+ sIg- B cell progenitors (mean cell recovery +/- SD = 7.2 +/- 11.7% of recovery in control cultures) and extended to CD19+CD34+ B cells (the most immature subset; 7.6 +/- 2.2%). In contrast, CD38 ligation did not substantially affect cell numbers in cultures of normal peripheral blood or tonsillar B cells. In stroma-supported cultures of 22 B-lineage acute lymphoblastic leukemia cases, anti-CD38 suppressed recovery of CD19+ sIg- leukemic cells. CD38 ligation also suppressed the growth of immature lymphoid cell lines cultured on stroma and, in some cases, in the presence of stroma-derived cytokines (interleukin [IL] 7, IL-3, and/or stem cell factor), but did not inhibit growth in stroma- or cytokine-free cultures. DNA content and DNA fragmentation studies showed that CD38 ligation of stroma-supported cells resulted in both inhibition of DNA synthesis and induction of apoptosis. It is known that CD38 catalyzes nicotinamide adenine dinucleotide (NAD+) hydrolysis into cyclic ADP-ribose (cADPR) and ADPR. However, no changes in NAD+ hydrolysis or cADPR and ADPR production after CD38 ligation were found by high-performance liquid chromatography; addition of NAD+, ADPR, or cADPR to cultures of lymphoid progenitors did not offset the inhibitory effects of anti-CD38. Thus, anti-CD38 does not suppress B lymphopoiesis by altering the enzymatic function of the molecule. In conclusion, these data show that CD38 ligation inhibits the growth of immature B lymphoid cells in the bone marrow microenvironment, and suggest that CD38 interaction with a putative ligand represents a novel regulatory mechanism of B lymphopoiesis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4592-4592
Author(s):  
Julius Juarez ◽  
John Hewson ◽  
Adam Cisterne ◽  
Rana Baraz ◽  
Kenneth F. Bradstock ◽  
...  

Abstract The role of CXCL12 in the growth of B cell progenitor acute lymphoblastic leukemia (ALL) and the homing of these cells to the bone marrow has been well established. However the effect of modulating CXCL12/CXCR4 interactions on the growth of ALL cells in vivo has not been examined. In this study we used specific peptide and small molecule antagonists of CXCR4 to examine the importance of CXCL12/CXCR4 interactions in the development of leukemia in an in-vivo murine model of ALL. CXCR4 antagonists induced mobilization of human and murine B cell progenitor ALL cells into the peripheral blood, with a 3.8±1.9 and 6.5±3.3 fold increase in leukemic cells/ml one hour after administration of the antagonist respectively, similar to that observed for normal progenitors. Daily administration of AMD3100 commencing the day following the injection of cells and continuing for 21 days resulted in a mean reduction in peripheral blood white cell count of 50±12% and the leukemic cell count of 63±4%. There was also a significant reduction in both the total cells in the spleen of 58±1% and the leukemic cell number in this organ of 75±11%. A significant reduction in leukemic cell numbers in the bone marrow was observed in one (44% reduction) case. There was reduced infiltration of other organs including kidney, liver and skeletal muscle. This study demonstrates that disrupting the CXCL12/CXCR4 axis in B cell progenitor ALL reduces the tumor burden. Whether this is due to direct inhibitory effects on proliferation and survival, or results from disruption of the leukemic cell interactions within the bone marrow remains to be determined.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3817-3828 ◽  
Author(s):  
Nisha Shah ◽  
LeAnn Oseth ◽  
Tucker W. LeBien

Clonal expansion of B-cell precursor acute lymphoblastic leukemia (ALL) is potentially regulated by survival, growth, and death signals transduced by the bone marrow (BM) microenvironment. Using a human BM stromal cell culture that supports the growth of normal human B-cell precursors, we established a pre-B ALL cell line designated BLIN-2. BLIN-2 has a clonal rearrangement of the Ig heavy chain locus, a dic(9;20) chromosomal abnormality, and a bi-allelic deletion of thep16INK4a and p19ARF genes. The most interesting feature of BLIN-2 is an absolute dependence on adherent human BM stromal cells for sustained survival and growth. BLIN-2 cultured in the absence of BM stromal cells undergo apoptosis, and direct contact with viable BM stromal cells is essential for optimal growth. BLIN-2 cells also grow on vascular cell adhesion molecule-1 (VCAM-1)–negative human skin fibroblasts, making it unlikely that a very late antigen-4 (VLA-4)/VCAM-1 interaction is required for BLIN-2 growth. Western blot analysis of BLIN-2 cells cultured in the presence or absence of BM stromal cells demonstrates that contact of BLIN-2 with BM stromal cells induces hyperphosphorylation of Rb. In contrast, the pre-B ALL cell line BLIN-1, which has a bi-allelic deletion of p16INK4ap19ARF but does not require BM stromal cells for growth, does not undergo Rb phosphorylation after BM stromal cell contact. The BLIN-2 cell line will facilitate identification of ligand/receptor interactions at the B-cell precursor/BM stromal cell interface and may provide new insight into microenvironmental regulation of leukemic cell survival and growth.


Sign in / Sign up

Export Citation Format

Share Document