scholarly journals Microstructural Change of TiAl Intermetallic Compound during Laser Fusion Processing and Mechanical Properties of the Fusion Zone.

1995 ◽  
Vol 44 (504) ◽  
pp. 1145-1150 ◽  
Author(s):  
Akio HIROSE ◽  
Yoshihiro ARITA ◽  
Kojiro F. KOBAYASHI
2019 ◽  
Vol 810 ◽  
pp. 27-33
Author(s):  
Makoto Hasegawa ◽  
Kotatsu Hirata ◽  
Ivo Dlouhý

Air plasma sprayed thermal barrier coatings (APS-TBCs) deposited on the TiAl intermetallic compounds was heat exposed in air at different temperatures and times to evaluate the microstructural change and delamination behavior. The thermal barrier coating (TBC) layer, bond coat (BC) layer and substrate were composed of 4 mol% Y2O3 stabilized ZrO2, CoNiCrAlY alloy (Co-32Ni-21Cr-8Al-0.5Y (mol%)) and TiAl intermetallic compound (Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1 Si (mol%)), respectively. Due to the heat exposure, diffusion of the elements occurred between the BC layer and the substrate, and diffusion layers were formed on both the BC layer and the substrate. A thermally grown oxide (TGO) layer was formed between the TBC layer and the BC layer. The thickness of the TGO layer and the diffusion layer increased with increasing exposure temperature and time. In the TBCs heat exposed at 1273 K for 200 h, a composite oxide of Al2O3 and TiO2 was formed in the BC layer. Regarding the TBCs which were as-deposited and heat exposed at 1073, 1173 K up to 200 h and at 1273 K for 10 h, delamination occurred in the TBC layer near the BC layer. In the TBCs exposed at 1273 K for 50 h or more, delamination occurred at the vicinity of the interface between diffusion layer on the substrate side and the unreacted side of the substrate too. In case that the TBCs were heat exposed at 1073 and 1173 K, the shear strength decreases after reaching the maximum value of the shear strength at 10 h heat exposure. When the TBCs were exposed to heat at 1273 K, the shear strength indicated a constant value after the shear strength increased up to 50 h. This change may be due to the change in crack path after exposure for 50 h at 1273 K.


2017 ◽  
Vol 66 (19) ◽  
pp. 196101
Author(s):  
Chen Zhi-Peng ◽  
Ma Ya-Nan ◽  
Lin Xue-Ling ◽  
Pan Feng-Chun ◽  
Xi Li-Ying ◽  
...  

Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Ateekh Ur Rehman ◽  
Nagumothu Kishore Babu ◽  
Mahesh Kumar Talari ◽  
Yusuf Siraj Usmani ◽  
Hisham Al-Khalefah

In the present study, a friction welding process was adopted to join dissimilar alloys of Ti-Al-4V to Nitinol. The effect of friction welding on the evolution of welded macro and microstructures and their hardnesses and tensile properties were studied and discussed in detail. The macrostructure of Ti-6Al-4V and Nitinol dissimilar joints revealed flash formation on the Ti-6Al-4V side due to a reduction in flow stress at high temperatures during friction welding. The optical microstructures revealed fine grains near the Ti-6Al-4V interface due to dynamic recrystallization and strain hardening effects. In contrast, the area nearer to the nitinol interface did not show any grain refinement. This study reveals that the formation of an intermetallic compound (Ti2Ni) at the weld interface resulted in poor ultimate tensile strength (UTS) and elongation values. All tensile specimens failed at the weld interface due to the formation of intermetallic compounds.


2019 ◽  
Vol 9 (8) ◽  
pp. 1609 ◽  
Author(s):  
A. K. M. Ashiquzzaman Shawon ◽  
Soon-Chul Ur

Aluminum antimonide is a semiconductor of the Group III-V order. With a wide indirect band gap, AlSb is one of the least discovered of this family of semiconductors. Bulk synthesis of AlSb has been reported on numerous occasions, but obtaining a single phase has always proven to be extremely difficult. This work reports a simple method for the synthesis of single-phase AlSb. Subsequently, consolidation was done into a near single-phase highly dense semiconductor in a form usable for thermoelectric applications. Further, the thermoelectric properties of this system are accounted for the first time. In addition, the mechanical properties of the intermetallic compound are briefly discussed for a possibility of further use.


2022 ◽  
Vol 905 ◽  
pp. 44-50
Author(s):  
Li Wang ◽  
Ya Ya Zheng ◽  
Shi Hu Hu

The effects of welding wire composition on microstructure and mechanical properties of welded joint in Al-Mg-Si alloy were studied by electrochemical test, X-ray diffraction (XRD) analysis and metallographic analysis. The results show that the weld zone is composed of coarse columnar dendrites and fine equated grains. Recrystallized grains are observed in the fusion zone, and the microstructure in the heat affected zone is coarsened by welding heat. The hardness curve of welded joint is like W-shaped, the highest hardness point appears near the fusion zone, and the lowest hardness point is in the heat affected zone. The main second phases of welded joints are: matrix α-Al, Mg2Si, AlMnSi, elemental Si and SiO2. The addition of rare earth in welding wire can refine the grain in weld zone obviously, produce fine grain strengthening effect, and improve the electrochemical performance of weld.


Sign in / Sign up

Export Citation Format

Share Document