scholarly journals A Brief Review of Robotic Machining

2019 ◽  
Vol 71 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Alexandru Bârsan

Abstract The approach of this paper was to analyze the technical borders of industrial robots and to provide an overview of current technology, technical constraints and the potential types of future research suggestion concerning robotic machining. These complex automation machines used in manufacturing processes are an emerging chapter of industrial engineering that contribute to automatically performing operation in subtractive manufacturing and sheet metal forming processes. Compared with CNC machines which have shape limitations and have the restricted working area, the industrial robot is a flexible, cost-saving alternative.

2008 ◽  
Vol 2 (6) ◽  
pp. 462-467 ◽  
Author(s):  
Hidetake Tanaka ◽  
◽  
Naoki Asakawa ◽  
Masatoshi Hirao ◽  

This study deals with the automation of metal hammering using an industrial robot and trial development of rapid prototyping of sheet metal forming. Computer-aided manufacturing (CAM) takes into account feedback considering tool positioning by using a range finder to improve depth and shape error at workpiece corners. Experimental results confirmed that our proposal reduces shape error through tool positioning optimization.


Author(s):  
Carl-Johan Jonsson ◽  
Roland Stolt ◽  
Fredrik Elgh

Sheet metal forming tools play an important role in the manufacturing of many products. With shorter product life cycles and demand for shorter time to market for new products, the process for design and manufacturing of stamping tools becomes a critical part. Stamping dies are often designed and manufactured by smaller, specialized companies. For a tooling company, knowledge and experience is an important competitive advantage. Traditionally the design process has been characterized by being based on few key individuals with much experience and craftsmanship. To stay competitive in this market there is a need for more efficient processes, systems, tools and supports in order to become more industrialized. This paper presents results from a study of the state of practice in industry within progressive stamping tool design as well as a review of relevant literature. The design and manufacturing processes for stamping dies in six companies have been investigated through semi-structured interviews, from which the main challenges in the current state for the companies are identified. The results from the interviews was analyzed and compared to the established concepts and frameworks of methods found in the literature review. The results and analysis points in the direction of efforts needed in supporting the formalization and reuse of information and knowledge from previous tool projects and production, especially during the critical steps of tool process planning and creating the tool layout.


Author(s):  
Jeremy I. Smith ◽  
Mick Cardew-Hall ◽  
Victor Pantano ◽  
Peter D. Hodgson

Knowledge Management systems utilising a number of different techniques have been developed for manufacturing processes including sheet metal forming. These are designed to overcome knowledge loss and allow an organisation to more effectively leverage its corporate experience base. Most systems focus on design activities only, they do not capture and integrate the experience gained on the shop floor during testing and production. In order to be used in these areas, knowledge capture must be as simple and time efficient as possible, even if this is at the expense of later potential reasoning. The design, implementation and results from the use of a knowledge acquisition system of this kind for the automotive stamping industry are described. Despite perceived conceptions of data captured, it is concluded that underlying relationships can be extracted from the information entered, allowing significant reuse of captured experience, whilst maintaining timely knowledge acquisition.


2005 ◽  
Vol 6-8 ◽  
pp. 465-470 ◽  
Author(s):  
Horst Meier ◽  
O. Dewald ◽  
Jian Zhang

This paper describes a new sheet metal forming process for the production of sheet metal components for limited-lot productions and prototypes. The kinematic based generation of the shape is implemented by means of a new forming machine comprising of two industrial robots. Compared to conventional sheet metal forming machines this newly developed sheet metal forming process offers a high geometrical form flexibility and also shows comparatively small deformation forces for high deformation degrees. The principle of the procedure is based on flexible shaping by means of a freely programmable path-synchronous movement of the two robots. The sheet metal components manufactured in first attempts are simple geometries like truncated pyramids and cones as well as spherical cups. Among other things the forming results could be improved by an adjustment of the movement strategy, a variation of individual process parameters and geometric modifications of the tools. Apart from a measurement of the form deviations of the sheet metal with a Coordinate Measurement Machine rasterised and deformed sheet metals were used for deformation analyses. In order to be able to use the potential of this process, a goal-oriented process design is as necessary as specific process knowledge. In order to achieve process stability and safety the essential process parameters and the process boundaries have to be determined.


2011 ◽  
Vol 473 ◽  
pp. 875-880 ◽  
Author(s):  
Yalin Kiliclar ◽  
Roman Laurischkat ◽  
Stefanie Reese ◽  
Horst Meier

The principle of robot based incremental sheet metal forming is based on flexible shaping by means of a freely programmable path-synchronous movement of two tools, which are operated by two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the geometry’s contour in lateral direction. The main problem during the forming process is the influence on the dimensional accuracy resulting from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robot’s compliance and the springback effects of the sheet metal. Finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM) [1] has been used for the simulation of the forming process. The finite strain constitutive model combines nonlinear kinematic and isotropic hardening and is derived in a thermodynamical setting. It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong–Frederick kinematic hardening which is widely adopted as capable of representing the above metal hardening effects. The major problem of low-order finite elements used to simulate thin sheet structures, such as used for the experiments, is locking, a non-physical stiffening effect. Recent research focuses on the large deformation version of a new eight-node solid-shell finite element based on reduced integration with hourglass stabilization. In the solid-shell formulation developed at IFAM ([2], [3]) the enhanced assumed strain (EAS) concept as well as the assumed natural strain (ANS) concept are implemented to circumvent locking. These tools are very important to obtain a good correlation between experiment and simulation.


2011 ◽  
Vol 473 ◽  
pp. 889-896 ◽  
Author(s):  
D. Kreimeier ◽  
J. Zhu ◽  
V. Smukala ◽  
B. Buff ◽  
C. Magnus

Robot based incremental sheet metal forming (Roboforming)is a new dieless forming process, which is suitable for cost-effective manufacture of prototype parts and small batch sizes.The principle of Roboforming is based on flexible shaping through a freely programmable path-synchronous movement of two industrial robots. These two robots, which are connected to a cooperating robot system, hold respectively a forming and a supporting tool. Similar to other incremental forming methods, the final shape is produced bythe movement of the forming toolalongthe lateral direction and its gradual infeed in the depth direction. In Roboforming, there are twodifferent strategies for the synchronous movement of the supporting tool, eitheralong the outer contour onbacksideof the sheet or directly opposed to the forming tool building a forming gap.The second strategy can be combined with a force controlled method to increase the surface quality and geometricaccuracy. MThe most existing CAM systems used in numerous incremental forming approaches are only applicable for milling machines. In this paper, with the use of self-programmed postprocessors and an Application Programming Interface (API) in a CAM system, movement programs for two cooperating robots can be generated for both forming strategies to produce sheet metal parts with different sizes and complex freeform structures. This CAM-solution for Roboforming is validated bythe forming experiments.


2012 ◽  
Vol 197 ◽  
pp. 691-695
Author(s):  
Irfan Manarvi ◽  
Amer Sattar ◽  
Jawad Ahmed Jadoon

Aluminum is one of the most popular metal in a wide variety of applications in manufacturing of components for airplanes, automobiles, house hold etc. A wide variety of parts are manufactured using aluminum sheet of different alloy composition. Wrinkling of sheet metal is the most undesirable phenomenon in sheet metal forming, drawing, punching and other similar manufacturing processes. Current research is focused on Finite Element Analysis of Aluminum 6061-T6 sheet to simulate onset and growth of wrinkles of various thicknesses using ANSYS. Based on the results a comparison was drawn between the wrinkling behaviors at varying load values.


Author(s):  
Anirudhan Pottirayil ◽  
Pradeep L. Menezes ◽  
Satish V. Kailas

Friction can influence the quality of the finished product to a large extent in certain manufacturing processes. Sheet metal forming is a particular case, where the friction between the hard-die and the relatively soft work-piece can be extremely important. Under such conditions, topography of the harder surface can influence the resistance to traction at the interface. This paper discusses about the correlation between certain features of the surface topography and coefficient of friction based on experiments involving sliding of a few soft metal pins against a harder material. A brief description of the experimental procedure and the analysis are presented. A hybrid parameter which encapsulates both the amplitude features as well as the relative packing of peaks is shown to correlate well with the coefficient of friction.


2011 ◽  
Vol 692 ◽  
pp. 1-7 ◽  
Author(s):  
Soraya Plaza ◽  
N. Ortega ◽  
Ainhoa Celaya ◽  
Jose Antonio Sánchez ◽  
Luis Norberto López de Lacalle ◽  
...  

The European Higher Education Area has entailed some upheaval since it has involved deep changes in university education. Among the subjects taught in technical education such as Manufacturing Technologies, which involve strong experimental contents, the use of specific tools is helpful for better understanding of such subjects. This article highlights the need for the use of simulation tools in the field of manufacturing processes. The student may achieve optimal understanding and learning from them. They can understand, in a more visual way, complex phenomena that govern different processes and the influence of key variables. Applications related to sheet metal forming, forging and casting processes are presented. The main objective is to enable students to better understand the phenomena that govern the processes of moulding and forming, with the invaluable help of simulation software. The final aim is to ensure that the student reaches an optimum knowledge of moulding and forming processes using simulation software.


2021 ◽  
Author(s):  
YONI SHCHEMELININ ◽  
RACHEL EISGRUBER ◽  
JARED W. NELSON ◽  
DOUGLAS CAIRNS ◽  
MATT EGLOFF ◽  
...  

Stretch broken carbon fiber (SBCF) is generated by breaking individual filaments in carbon fiber tows at inherent flaws in tension in a continuous process. This process results in randomly broken, collimated fiber fragments. The shorter fiber length improves forming properties while retaining mechanical strength through shear load transfer. SBCF has the potential to take advantage of low-cost manufacturing processes like those used in sheet metal forming, resulting in ordersof- magnitude cost savings and enabling conversion to composite structures across the industry. Because uncured continuous carbon fiber composites do not exhibit significant plastic deformation, they cannot be readily adapted to many common sheet metal forming techniques. SBCF composites exhibit pseudo-plastic deformation, but this deformation is due to different mechanisms. To adapt the manufacturing processes for large and complex parts, new materials testing techniques are needed to quantify the forming behavior of SBCF at the meso-scale (tow and ply). This work’s primary objective is to develop predictive models for complex shape forming and large component characterization. Tests have been developed to characterize the behavior of SBCF tows under various forming conditions. Tow forming and laminate bulge testing allowed for experimental characterization of the SBCF response. Respectively, these tests focus on developing the load-displacement material response along with variation of the strain distribution. Using design of experiment (DOE) technique, the forming response to materials properties such as resin viscosity and mean fiber length have been related. For each test, a correlated Finite Element Analysis (FEA) model was developed, allowing for progression toward understanding a wider array of properties than experimentally.


Sign in / Sign up

Export Citation Format

Share Document