scholarly journals The structure of forest stands in the Tatra National Park: The results of 2016–2017 inventory

2019 ◽  
Vol 80 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Jan Bodziarczyk ◽  
Jerzy Szwagrzyk ◽  
Tomasz Zwijacz-Kozica ◽  
Antoni Zięba ◽  
Janusz Szewczyk ◽  
...  

Abstract The composition and structure of forest stands in the Tatra National Park were examined using data gathered in 2016 and 2017 from 617 circular sample plots (0.05 ha each). The diameter at breast height of all living trees, standing dead trees, snags, and wind throws was measured along with diameters and lengths of fallen logs within the plot boundaries. Tree height was measured for all living trees within the core (0.01 ha) of the sample plots. Using the obtained data, height-diameter curves were calculated for all major tree species and in the case of spruce, the height-diameter relationships were also calculated separately for each of the three elevation zones (up to 1200 m, between 1200 and 1400 m, above 1400 m). For each elevation zone and park protection zone, we also determined the volumes of live and dead trees. The volume of living trees in the Tatra National Park amounted to 259 m3/ha, which was higher than the volume of dead trees (176 m3/ha). Snags constituted the largest part of the dead wood whilst over 97% of the standing dead trees were spruce Picea abies. Among living trees, the share of spruce ranged from 81% in the low elevation zone to 98% in the middle zone. Other significant species in the lower zone were Abies alba (11%) and Fagus sylvatica (4.5%), while in the middle and upper elevation zones only Sorbus aucuparia occurred in significant numbers. Furthermore, in the lower elevation zone, Fagus sylvatica was the only species displaying significantly higher volumes in the ‘strict protection’ zone compared to the other park areas. In the ‘landscape protection’ zone, Picea abies was the most dominant species and the share of other species in the lowest elevation zones calculated based on tree density was smaller than calculated based on tree volume, indicating problems with stand conversion from spruce monoculture to mixed forest.

2021 ◽  
Vol 63 (1) ◽  
pp. 36-47
Author(s):  
Wojciech Grodzki

Abstract Pheromone traps are used for monitoring I. typographus populations in Norway spruce stands of the Tatra National Park (TPN) in Poland. The presented study is based on the set of pheromone traps of precisely known location (23) located in the whole area of the TPN and operated continuously in 2010–2019. The data on the captures of beetles were compared with two kinds of data concerning the mortality: the area covered by standing dead trees (airborne photographs) in the no-intervention zone, and the volume of trees infested by bark beetles processed in the active protection zone. No relationship was found between the mean numbers of beetles captured yearly in all pheromone traps in the whole TPN area and the volume of infested trees removed from the stands in the active protection zone. The captures in the two selected study areas were correlated with the area of spots with dead trees in the 500 m circle around the traps, however, this correlation is not statistically significant. There is no relation of captures to the volume of processed infested trees. The captures decreased in the growing seasons after the wind damage, and increased markedly after the drought started in 2015. The results of pheromone trapping are affected by several factors, as wind damage and defence potential of trees resulting from their physiological status. Pheromone traps represent valuable source of information about the bark beetle I. typographus population dynamics, although the collected data do not enable direct definition of its population level, especially in the protected areas with different and unstable (changed in 2017) approach to the protection of stands. As most of the information on beetles is captured in the first half of the growing season, the data collected till the end of July are sufficient for monitoring purposes; thus, the trapping should be reduced to the period May–July.


2020 ◽  
Vol 12 (4) ◽  
pp. 661 ◽  
Author(s):  
Peter Krzystek ◽  
Alla Serebryanyk ◽  
Claudius Schnörr ◽  
Jaroslav Červenka ◽  
Marco Heurich

Knowledge of forest structures—and of dead wood in particular—is fundamental to understanding, managing, and preserving the biodiversity of our forests. Lidar is a valuable technology for the area-wide mapping of trees in 3D because of its capability to penetrate vegetation. In essence, this technique enables the detection of single trees and their properties in all forest layers. This paper highlights a successful mapping of tree species—subdivided into conifers and broadleaf trees—and standing dead wood in a large forest 924 km2 in size. As a novelty, we calibrate the critical stopping criterion of the tree segmentation based on a normalized cut with regard to coniferous and broadleaf trees. The experiments were conducted in Šumava National Park and Bavarian Forest National Park. For both parks, lidar data were acquired at a point density of 55 points/m2. Aerial multispectral imagery was captured for Šumava National Park at a ground sample distance (GSD) of 17 cm and for Bavarian Forest National Park at 9.5 cm GSD. Classification of the two tree groups and standing dead wood—located in areas of pest infestation—is based on a diverse set of features (geometric, intensity-based, 3D shape contexts, multispectral-based) and well-known classifiers (Random forest and logistic regression). We show that the effect of under- and oversegmentation can be reduced by the modified normalized cut segmentation, thereby improving the precision by 13%. Conifers, broadleaf trees, and standing dead trees are classified with overall accuracies better than 90%. All in all, this experiment demonstrates the feasibility of large-scale and high-accuracy mapping of single conifers, broadleaf trees, and standing dead trees using lidar and aerial imagery.


2019 ◽  
Vol 11 (22) ◽  
pp. 2614 ◽  
Author(s):  
Nina Amiri ◽  
Peter Krzystek ◽  
Marco Heurich ◽  
Andrew Skidmore

Knowledge about forest structures, particularly of deadwood, is fundamental for understanding, protecting, and conserving forest biodiversity. While individual tree-based approaches using single wavelength airborne laserscanning (ALS) can successfully distinguish broadleaf and coniferous trees, they still perform multiple tree species classifications with limited accuracy. Moreover, the mapping of standing dead trees is becoming increasingly important for damage calculation after pest infestation or biodiversity assessment. Recent advances in sensor technology have led to the development of new ALS systems that provide up to three different wavelengths. In this study, we present a novel method which classifies three tree species (Norway spruce, European beech, Silver fir), and dead spruce trees with crowns using full waveform ALS data acquired from three different sensors (wavelengths 532 nm, 1064 nm, 1550 nm). The ALS data were acquired in the Bavarian Forest National Park (Germany) under leaf-on conditions with a maximum point density of 200 points/m 2 . To avoid overfitting of the classifier and to find the most prominent features, we embed a forward feature selection method. We tested our classification procedure using 20 sample plots with 586 measured reference trees. Using single wavelength datasets, the highest accuracy achieved was 74% (wavelength = 1064 nm), followed by 69% (wavelength = 1550 nm) and 65% (wavelength = 532 nm). An improvement of 8–17% over single wavelength datasets was achieved when the multi wavelength data were used. Overall, the contribution of the waveform-based features to the classification accuracy was higher than that of the geometric features by approximately 10%. Our results show that the features derived from a multi wavelength ALS point cloud significantly improve the detailed mapping of tree species and standing dead trees.


Wetlands ◽  
2017 ◽  
Vol 38 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Mary Jane Carmichael ◽  
Ashley M. Helton ◽  
Joseph C. White ◽  
William K. Smith

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Sutedjo Sutedjo ◽  
Warsudi Warsudi

 Akasia mangium (Acacia mangium Willd) bukan tumbuhan asli Kalimantan namun sejak puluhan tahun tumbuh berkembang pesat di berbagai wilayah Kalimantan termasuk Kalimantan Timur. Dikenal sebagai tumbuhan yang mampu tumbuh di lahan kritis sehingga pada awal tahun 1990-an dijadikan tanaman  reboisasi sekaligus pengendali alang-alang di wilayah kritis hutan penelitian dan pendidikan Universitas Mulawarman di Bukit Soeharto. Mengherankan, bahwa beberapa tahun taerkhir sebagian praktisi kehutanan dan reklamasi pascatambang merasa gamang menggunakan A. mangium, khawatir jika jenis tersebut akan benar benar menjadi spesies invasif.  Gejala untuk menolak bahkan menghindari  A. mangium sebagai komoditas kehutanan terutama sebagai jenis pengendali lahan kritis mulai meluas. Untuk mengetahui seberapa benar anggapan Acacia mangium sebagai jenis invasif maka dilakukan evaluasi dengan melakukan analisis vegetasi terhadap 3 ha tegakan hutan A. mangium yang ditanam di Bukit Soeharto sebagai uji petik yang saat sekarang telah berumur sekitar 25 tahun. Hasil evaluasi membuktikan bahwa jumlah tanaman per ha (kerapatan) pohon A. mangium menurun (kurang dari jumlah saat ditanam atau sekitar 800 individu/ha). Jumlah yang menurun itupun cenderung mengelompok. Sebagian pohon bahkan ditemukan dalam kondisi mati generasi (standing dead trees). Sementara itu jumlah spesies pohon setempat (local trees species) juga mulai muncul di antara tegakan A.mangium. Dengan demikian terbukti  bahwa A. mngium bukanlah tipe invasif  yang sesungguhnya dan tidak ada alasan utuk menolak penggunaannya sebagai tanaman pengendali lahan kritis selama potensi ancaman terjadinya kebakaran lahan hutan dapat dicegah.


2015 ◽  
Vol 353 ◽  
pp. 136-147 ◽  
Author(s):  
Stella J.M. Cousins ◽  
John J. Battles ◽  
John E. Sanders ◽  
Robert A. York

1988 ◽  
Vol 66 (1) ◽  
pp. 130-137 ◽  
Author(s):  
Peter M. Frenzen ◽  
Marianne E. Krasny ◽  
Lisa P. Rigney

Mudflow deposits, when dated, offer an excellent opportunity to examine vegetation and soil development overtime. Vegetation on a 33-year-old mudflow deposit at Mount Rainier National Park, WA, is compared with data collected 4 and 7 years after deposition. Four plant communities are recognized on the mudflow deposit and one is recognized in the adjacent, undisturbed forest. Soil characteristics in each community are compared with soil data collected 8 and 15 years after deposition. Key factors influencing plant succession and soil development on the mudflow deposit are (i) presence of residual standing dead trees and associated organic debris and (ii) proximity of sample stands to adjacent, undisturbed forest. Successional trends and changes in soil characteristics over a 33-year period are discussed.


2002 ◽  
Vol 32 (2) ◽  
pp. 283-294 ◽  
Author(s):  
R D Whitney ◽  
R L Fleming ◽  
K Zhou ◽  
D S Mossa

Root and butt rots are often implicated as causal factors influencing windfall and mortality of residual trees following partial cutting. Measurements of decay at stump level (i.e., the upward extension of root rot) were made on cross-sectional discs taken from windfallen and standing dead 100- to 130-year-old black spruce (Picea mariana (Mill.) BSP) near Nipigon in northwestern Ontario. Subsequently, causal fungi were identified using laboratory culturing procedures. The incidence and amount of decay in windfallen trees within leave strips following alternate strip clear-cutting was higher than the general stand levels but lower than that found in windfallen trees in uncut forest. The incidence and amount of decay was also higher in windfallen trees near the centres of the leave strips than in those near the edges and corners of these strips. These results indicate a strong association between root rot and windfall and suggest that for comparable windfirmness, trees near the edges of residual stands must have less decay than those in more sheltered locations. Decay levels tended to be lower on poorly drained sites than on well-drained sites. In uncut forest, and especially in the leave strips, more trees were uprooted than died standing or suffered stem breakage. The incidence and amount of decay tended to be lower in uprooted trees than in standing dead trees or those with stem breakage, although in uncut forest virtually all windfallen or standing dead trees had some degree of stump-level decay. Of the 21 wood-rotting Basidiomycetes isolated from windfallen and standing dead trees, Inonotus tomentosus (Fr.:Fr.) Teng was the most frequent, followed in order by Armillaria ostoyae (Romagn.) Herink, Coniophora puteana (Schum.:Fr.) Karst., and Scytinostroma galactinum (Fr.) Donk. The incidence of I. tomentosus, C. puteana, Xeromphalina campanella (Batsch.:Fr.) Kuhner & Maire, and Serpula himantioides (Fr.:Fr.) Karst., but not Armillaria ostoyae, Scytinostroma galactinum, and Sistotrema brinkmanii (Bres.) Erik., was greater in windfallen and standing dead trees from the leave strips than in the general stand populations. In the leave strips, I. tomentosus, Amylostereum chailletii (Pers.:Fr.) Boid., and Trichaptum abietinum (Dickson:Fr.) Ryv. tended to greater relative abundance in standing dead trees, while the relative abundance of C. puteana and Serpula himantioides was greater in trees with stem breakage. Armillaria ostoyae and Scytinostroma galactinum were as abundant in uprooted trees as in standing dead trees or those with stem breakage. Ascocoryne sarcoides (Jacq.:Fr.) G. & W., a staining fungus that may protect against decay fungi, was frequently isolated in this study.


Sign in / Sign up

Export Citation Format

Share Document