Around Taylor’s Theorem on the Convergence of Sequences of Functions

2021 ◽  
Vol 78 (1) ◽  
pp. 129-138
Author(s):  
Grażyna Horbaczewska ◽  
Patrycja Rychlewicz

Abstract Egoroff’s classical theorem shows that from a pointwise convergence we can get a uniform convergence outside the set of an arbitrary small measure. Taylor’s theorem shows the possibility of controlling the convergence of the sequences of functions on the set of the full measure. Namely, for every sequence of real-valued measurable factions |fn } n∈ℕ pointwise converging to a function f on a measurable set E, there exist a decreasing sequence |δn } n∈ℕ of positive reals converging to 0 and a set A ⊆ E such that E \ A is a nullset and lim n → + ∞ | f n ( x ) − f ( x ) | δ n = 0   for   all   x ∈ A .   Let   J ( A ,   { f n } ) {\lim _{n \to + \infty }}\frac{{|{f_n}(x) - f(x)|}}{{{\delta _n}}} = 0\,{\rm{for}}\,{\rm{all}}\,x \in A.\,{\rm{Let}}\,J(A,\,\{ {f_n}\} ) denote the set of all such sequences |δn } n∈ℕ. The main results of the paper concern basic properties of sets of all such sequences for a given set A and a given sequence of functions. A relationship between pointwise convergence, uniform convergence and the Taylor’s type of convergence is considered.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Vatan Karakaya ◽  
Necip Şimşek ◽  
Müzeyyen Ertürk ◽  
Faik Gürsoy

We studyλ-statistically convergent sequences of functions in intuitionistic fuzzy normed spaces. We define concept ofλ-statistical pointwise convergence andλ-statistical uniform convergence in intuitionistic fuzzy normed spaces and we give some basic properties of these concepts.


Filomat ◽  
2016 ◽  
Vol 30 (3) ◽  
pp. 557-567
Author(s):  
Ekrem Savaş ◽  
Mehmet Gürdal

In the present paper we are concerned with I-convergence of sequences of functions in random 2-normed spaces. Particularly, following the line of recent work of Karakaya et al. [23], we introduce the concepts of ideal uniform convergence and ideal pointwise convergence in the topology induced by random 2-normed spaces, and give some basic properties of these concepts.


2018 ◽  
Vol 25 (3) ◽  
pp. 475-479
Author(s):  
Emre Taş ◽  
Tugba Yurdakadim

AbstractIn this paper, using the concept of ideal convergence, which extends the idea of ordinary convergence and statistical convergence, we are concerned with the I-uniform convergence and the I-pointwise convergence of sequences of functions defined on a set of real numbers D. We present the Arzelà–Ascoli theorem by means of ideal convergence and also the relationship between I-equicontinuity and I-continuity for a family of functions.


2019 ◽  
Vol 52 (1) ◽  
pp. 139-175
Author(s):  
Marcus Webb ◽  
Vincent Coppé ◽  
Daan Huybrechs

AbstractFourier series approximations of continuous but nonperiodic functions on an interval suffer the Gibbs phenomenon, which means there is a permanent oscillatory overshoot in the neighborhoods of the endpoints. Fourier extensions circumvent this issue by approximating the function using a Fourier series that is periodic on a larger interval. Previous results on the convergence of Fourier extensions have focused on the error in the $$L^2$$ L 2 norm, but in this paper we analyze pointwise and uniform convergence of Fourier extensions (formulated as the best approximation in the $$L^2$$ L 2 norm). We show that the pointwise convergence of Fourier extensions is more similar to Legendre series than classical Fourier series. In particular, unlike classical Fourier series, Fourier extensions yield pointwise convergence at the endpoints of the interval. Similar to Legendre series, pointwise convergence at the endpoints is slower by an algebraic order of a half compared to that in the interior. The proof is conducted by an analysis of the associated Lebesgue function, and Jackson- and Bernstein-type theorems for Fourier extensions. Numerical experiments are provided. We conclude the paper with open questions regarding the regularized and oversampled least squares interpolation versions of Fourier extensions.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Agata Caserta ◽  
Giuseppe Di Maio ◽  
Ljubiša D. R. Kočinac

We study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustiveness.


1975 ◽  
Vol 20 (1) ◽  
pp. 73-76 ◽  
Author(s):  
W. F. Moss

In this note it is shown in the most frequently encountered spaces of test functions in the theory of generalized functions that the customary definitions of convergence are equivalent to apparently much weaker definitions. For example, in the space g the condition of uniform convergence of the functions together with all derivatives (which appears in the definition of convergence) is equivalent to the condition of pointwise convergence of the functions alone. Thus verification of convergence is simplified somewhat.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Magdalena Górajska

AbstractThe paper presents a new type of density topology on the real line generated by the pointwise convergence, similarly to the classical density topology which is generated by the convergence in measure. Among other things, this paper demonstrates that the set of pointwise density points of a Lebesgue measurable set does not need to be measurable and the set of pointwise density points of a set having the Baire property does not need to have the Baire property. However, the set of pointwise density points of any Borel set is Lebesgue measurable.


Sign in / Sign up

Export Citation Format

Share Document