Wrought Magnesium Alloys ZM21, ZW3 and WE43 Processed by Hydrostatic Extrusion with Back Pressure

2012 ◽  
Vol 57 (2) ◽  
pp. 485-493 ◽  
Author(s):  
W. Pachla ◽  
A. Mazur ◽  
J. Skiba ◽  
M. Kulczyk ◽  
S. Przybysz

Wrought Magnesium Alloys ZM21, ZW3 and WE43 Processed by Hydrostatic Extrusion with Back PressureCold hydrostatic extrusion with and without back pressure of commercial ZM21, ZW3 and WE43 magnesium alloys has been performed at originally designed hydrostatic extrusion press operating up to 2000 MPa with back pressure up to 700 MPa. Alloys were cold extruded in one pass into rods between 5 and 9 mm in the outer diameter with product velocities between 1 and 10 m/min and extrusion ratios above 2. Application of back pressure extended formability of all magnesium alloys. It was due to hydrostatic pressure superimposed on the extruded product what inhibits the cracks generation and propagation. Cold deformation restrained the grain growth and softening processes while severe deformation in one pass increased grain refinement and density of internal defects. Ultimate tensile strength ranging from 370 MPa (ZM21) through 400 MPa (ZW3) up to 410 MPa (WE43), with respective yield stresses from 270 MPa through 300 MPa up to 350 MPa and the respective elongation from 13% through 12% to 7% were obtained in extruded rods, which are the best reported data in literature up to this day. Wrought magnesium alloys after hydrostatic extrusion can serve as semi-products for structures that call for high strength, for example as biodegradable implants or fastening components in form of bolts, rivets, nuts, pins, joints, etc.

Author(s):  
Yanwei Liu ◽  
Leyun Wang ◽  
Huan Zhang ◽  
Gaoming Zhu ◽  
Jie Wang ◽  
...  

2016 ◽  
Vol 663 ◽  
pp. 321-331 ◽  
Author(s):  
Hucheng Pan ◽  
Yuping Ren ◽  
He Fu ◽  
Hong Zhao ◽  
Liqing Wang ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (17) ◽  
pp. 1233-1239 ◽  
Author(s):  
Ke Han ◽  
Rongmei Niu ◽  
Jun Lu ◽  
Vince Toplosky

ABSTRACTOne important approach to increasing High magnetic fields (HMF) beyond what is now possible is to improve the properties of various composite materials used as both conductors and structural support. Typical conductors for high field magnets are Cu-based metal-metal composites. To achieve high mechanical strength, these composites are fabricated by cold deformation, which introduces high densities of interfaces along with lattice distortions. During the operation of a magnet, mechanical load, high magnetic field, extreme temperatures and other stressors are imposed on the materials, causing them to be further “processed”. The composite conductors in a magnet, for example, may undergo high temperatures, which reduce lattice distortions or soften the material. At the same time, HMF may increase lattice distortion, leading to a complex change in interface characteristics. Both the mechanical properties of the conductors, like the tensile and yield strength, and the electric conductivity of the composites are closely connected to changes in lattice distortion and interface density. Understanding these changes helps us to assure that materials can operate in optimized conditions during most of magnets’ service life. Maximizing service life is critical, given the high cost of building and operating high field magnets. The goal of this paper is to 1) show our understanding of changes that occur in the properties of selected materials during the fabrication and under HMF and 2) to discuss how those changes relate to the microstructure of these materials and consequently to the service life of high field magnets.


Author(s):  
Jun Fang ◽  
Shiqiang Lu ◽  
Kelu Wang ◽  
Zhengjun Yao

In order to achieve the precision bending deformation, the effects of process parameters on springback behaviors should be clarified preliminarily. Taking the 21-6-9 high-strength stainless steel tube of 15.88 mm × 0.84 mm (outer diameter × wall thickness) as the objective, the multi-parameter sensitivity analysis and three-dimensional finite element numerical simulation are conducted to address the effects of process parameters on the springback behaviors in 21-6-9 high-strength stainless steel tube numerical control bending. The results show that (1) springback increases with the increasing of the clearance between tube and mandrel Cm, the friction coefficient between tube and mandrel fm, the friction coefficient between tube and bending die fb, or with the decreasing of the mandrel extension length e, while the springback first increases and then remains unchanged with the increasing of the clearance between tube and bending die Cb. (2) The sensitivity of springback radius to process parameters is larger than that of springback angle. And the sensitivity of springback to process parameters from high to low are e, Cb, Cm, fb and fm. (3) The variation rules of the cross section deformation after springback with different Cm, Cb, fm, fb and e are similar to that before springback. But under same process parameters, the relative difference of the most measurement section is more than 20% and some even more than 70% before and after springback, and a platform deforming characteristics of the cross section deformation is shown after springback.


Sign in / Sign up

Export Citation Format

Share Document