scholarly journals The precision machining of hard and brittle materials using diamond tools.

1986 ◽  
Vol 52 (12) ◽  
pp. 2020-2023 ◽  
Author(s):  
HIROYUKI MATSUNAGA
2007 ◽  
Vol 359-360 ◽  
pp. 123-127
Author(s):  
Tian Ji ◽  
Dong Ming Guo ◽  
Gui Hong Bian

Some key parts used in such area as the national defence are made of high performance hard and brittle materials, and they should meet not only the requirement of geometry accuracy but also that of specified physical performance in manufacturing. The Radome is one of such key parts in the active homing guidance weapon, with a typical complicated surface. In order to meet the electric thickness requirement, a controlled removal grinding point-by-point is needed for the radome during its precision machining. A special 3-coordinates equipment with spherical diamond grinding wheel is adopted; the grinding paths are generated in the planes normal to the cutter axis with a Z-level profile machining method; the feed step is determined by step screening method; and the stepping between layers is carried out according to the remaining scallop crest height. Process conditions including the grinding depth and the workpiece speed are determined through experiments, and the process errors under different processing conditions are analyzed to put forward an optimized processing tactics. As a result, a basis for precision removal process of any other part of high performance hard and brittle materials with complex surface is established, and a technology support for precision machining of key parts in the national major projects is provided.


2007 ◽  
Vol 359-360 ◽  
pp. 274-278
Author(s):  
Li Hua Dong ◽  
Chun Hua Fan ◽  
Jian Huang ◽  
Hong Xia Luo

The application of hard and brittle materials become wider and wider because its self-characteristics. It is used widely in finish machining of products, such as memory record device, information products, precision instrument, etc. Traditional grinding-polishing methods have not suited for precision machining requirements of hard and brittle materials. Carbide and ceramic are chosen as workpiece. Diamond polishing film is chosen as polishing tool. Polishing experiments are done by using self-made film polishing machine with high speed and cooling inside. Polishing mechanism and polishing technology of what polishing film polishes hard and brittle materials will be studied by changing polishing speed and diamond grain size and so on. The experimental study of wear shape of gringding grain, desquamation process of grain and surface quality of workpiece will be done in this paper so that the reasonable technology of polishing hard and brittle materials with high productivity is obtained. It enrich and perfect the ultra-precision machining theory. A new method of ultra-precision lapping and polishing of hard and brittle materials is provided.


2012 ◽  
Vol 523-524 ◽  
pp. 7-12 ◽  
Author(s):  
Wei Hang ◽  
Li Bo Zhou ◽  
Jun Shimizu ◽  
Takeyuki Yamamoto ◽  
Ju Long Yuan

As a typical multi-functional single crystal material, Lithium tantalite (LiTaO3 or LT) exhibits its excellent electro-optical, piezoelectric properties and has now been widely applied into many applications, such as surface acoustic wave (SAW) filters, isolators and other photoelectron devices. Compared with other functional crystals like silicon and sapphire, LT behaves much more brittle and softer. The knowledge of precision machining built on conventional hard-and-brittle materials is no longer applicable to this new type of soft-and-brittle crystal. In order to clarify the fundamental mechanical properties of LT, micro/nano-indentation tests are conducted in this study. The obtained results are analyzed and discussed to understand the behavior of this type of materials in their machining process.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


2018 ◽  
Vol 108 (01-02) ◽  
pp. 53-57
Author(s):  
K. Drewle ◽  
T. Stehle ◽  
H: Möhring

Die schwingungsunterstützte Bearbeitung hat sich bereits bei der Zerspanung von hartspröden Werkstoffen mit einer einachsigen Schwingung in der Kontaktzone bewährt. Untersuchungen zu schwingungsunterstützten Bohrprozessen beschränken sich bisher auf eine Schwingungserzeugung, die entlang der Vorschubachse ausgerichtet ist. Für alternative Schwingungsrichtungen fehlt in erster Linie die geeignete Aktorik. In diesem Beitrag wird eine alternative Methode zur Erzeugung einer axial-tangentialen Schwingung in der Kontaktzone untersucht.   Ultrasonic assisted machining with uniaxial vibration is a well-proven process for machining hard and brittle materials. Existing investigations of vibration assisted drilling and boring processes so far are limited to an oscillation along the feed axis, which primarily due to nonexistent actuators. This contribution will present investigations into an alternative method for creating axial-tangential vibrations in the tool contact zone.


Sign in / Sign up

Export Citation Format

Share Document